20.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且滿足b2+c2-a2=bc,$\overrightarrow{AB}$•$\overrightarrow{BC}$>0,a=$\frac{\sqrt{3}}{2}$,則b+c的取值范圍是( 。
A.(1,$\frac{3}{2}$)B.($\frac{\sqrt{3}}{2}$,$\frac{3}{2}$)C.($\frac{1}{2}$,$\frac{3}{2}$)D.($\frac{1}{2}$,$\frac{3}{2}$]

分析 利用已知代入到余弦定理中求得cosA的值,進(jìn)而求得A,利用平面向量的運(yùn)算可得B的范圍,利用正弦定理,正弦函數(shù)的圖象和性質(zhì)即可得解b+c的取值范圍.

解答 解:在△ABC中,∵b2+c2-a2=bc,
由余弦定理可得cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{bc}{2bc}$=$\frac{1}{2}$,
∵A是三角形內(nèi)角,
∴A=60°,
∵a=$\frac{\sqrt{3}}{2}$,
∴$\frac{\frac{\sqrt{3}}{2}}{\frac{\sqrt{3}}{2}}$=1=$\frac{sinB}=\frac{c}{sinC}=\frac{c}{sin(120°-B)}$,
∵$\overrightarrow{AB}$•$\overrightarrow{BC}$=|$\overrightarrow{AB}$|•|$\overrightarrow{BC}$|•cos(π-B)>0,
∴可得:cosB<0,B為鈍角,
∴b+c=sinB+sin(120°-B)=$\frac{3}{2}$sinB+$\frac{\sqrt{3}}{2}$cosB=$\sqrt{3}$sin(B+30°),
∵B∈(90°,120°),可得:B+30°∈(120°,150°),可得:sin(B+30°)∈($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),
∴b+c=$\sqrt{3}$sin(B+30°)∈($\frac{\sqrt{3}}{2}$,$\frac{3}{2}$).
故選:B.

點(diǎn)評(píng) 本題主要考查了正弦定理,余弦定理,平面向量在解三角形中的應(yīng)用.注意余弦定理的變形式的應(yīng)用,考查計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=2$\sqrt{3}$sinxcosx-cos2x
(Ⅰ)求f(x)的最小正周期; 
(Ⅱ)求函數(shù)f(x)在區(qū)間[0,$\frac{2π}{3}$]上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)sgn(x)=$\left\{\begin{array}{l}{-1,x<0}\\{0,x=0}\\{1,x>0}\end{array}\right.$叫做符號(hào)函數(shù),則不等式x+(x+2)sgn(x+1)≤4的解集為(  )
A.(-∞,1]B.(-1,1)C.(-1,1]D.[-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.命題“?x∈R,都有|sinx|<1”的否定是(  )
A.?x∈R,都有|sinx|>1B.?x∈R,都有|sinx|≥1C.?x∈R,使|sinx|>1D.?x∈R,使|sinx|≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)函數(shù)f(x)=|x+1|-|x-2|
(I)若不等式f(x)≤a的解集為(-∞,$\frac{1}{2}$].求a的值;
(II)若?x∈R.使f(x)<m2-4m,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.一個(gè)樣本容量為8的樣本數(shù)據(jù),它們按一定順序排列可以構(gòu)成一個(gè)公差不為0的等差數(shù)列{an},若a3=5,且a1,a2,a5成等比數(shù)列,則此樣本數(shù)據(jù)的中位數(shù)是( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.執(zhí)行如圖所示的程序框圖,當(dāng)輸出(x,-8)時(shí),則x=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.直線l經(jīng)過點(diǎn)P(3,4),它的傾斜角是直線y=$\sqrt{3}$x+$\sqrt{3}$的傾斜角的2倍,求直線l的點(diǎn)斜式方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=$\frac{{x}^{2}+1}{x}$的奇偶性為( 。
A.奇函數(shù)B.偶函數(shù)
C.既是奇函數(shù)又是偶函數(shù)D.既不是奇函數(shù)又不是偶函數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案