14.通過隨機詢問110名性別不同的大學生是否愛好某項運動,得到如下的列聯(lián)表:
總計
愛好402060
不愛好203050
總計6050110
由列聯(lián)表算得k≈7.8
附表:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
參照附表,得到的正確結(jié)論是( 。
A.在犯錯誤的概率不超過0.01的前提下認為“愛好該項運動與性別有關(guān)”
B.在犯錯誤的概率不超過0.01的前提下認為“愛好該項運動與性別無關(guān)”
C.在犯錯誤的概率不超過0.001的前提下,認為“愛好該項運動與性別有關(guān)”
D.在犯錯誤的概率不超過0.001的前提下,認為“愛好該項運動與性別無關(guān)”

分析 直接由題目給出的k值結(jié)合附表得答案.

解答 解:由列聯(lián)表算得k≈7.8,
∵6.635<7.8<10.828,
∴在犯錯誤的概率不超過0.010的前提下認為“愛好該項運動與性別有關(guān)”.
故選:A.

點評 本題考查獨立性檢驗,對附表的理解是解答該題的關(guān)鍵,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

15.已知tan($\frac{π}{4}$+α)=$\frac{1}{3}$.
(1)求$\frac{sin2α-co{s}^{2}α}{1+sin2α}$的值;
(2)若α為直線l的傾斜角,當直線l與曲線C:x=1+$\sqrt{2y-{y}^{2}}$有兩個交點時,求直線l的縱截距b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.設函數(shù)f(x)=$\left\{\begin{array}{l}1,x∈Q\\ π,x∈{∁_R}Q\end{array}$,下列結(jié)論中不正確的是( 。
A.函數(shù)值域為[1,π]B.此函數(shù)不單調(diào)C.此函數(shù)為偶函數(shù)D.方程f[f(x)]=x有兩解

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知四邊形ABCD為矩形,PA⊥平面ABCD,設PA=AB=a,BC=2a,求二面角B-PC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,△PAD與正方形ABCD共用一邊AD,平面PAD⊥平面ABCD,其中PA=PD,AB=2,點E是棱PA的中點.
(1)求證:PC∥平面BDE;
(2)若直線PA與平面ABCD所成角為60°,求點A到平面BDE的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.在長方體ABCD-A1B1C1D1中,AB=BC=2AA1=4.
(1)求證:平面BDC1∥平面AB1D1
(2)求點C1到平面AB1D1的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=ex(x2+ax+a).
(1)當a=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若關(guān)于x的不等式f(x)≤ea在[a,+∞)上有解,求實數(shù)a的取值范圍;
(3)若曲線y=f(x)存在兩條互相垂直的切線,求實數(shù)a的取值范圍.(只需直接寫出結(jié)果)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.如圖所示,在直三棱柱ABC-A1B1C1中,BC=AC,AB=$\sqrt{2}$AA1,AC1⊥A1B,M,N分別是A1B1,AB的中點,給出下列結(jié)論:
①C1M⊥平面A1ABB,
②A1B⊥NB1,
③平面AMC1⊥平面CBA1
其中正確結(jié)論的個數(shù)為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知$\overrightarrow a$,$\overrightarrow b$均為單位向量,它們的夾角為60°,$\overrightarrow c$=λ$\overrightarrow a$+μ$\overrightarrow b$,若$\overrightarrow a$⊥$\overrightarrow c$,則下列結(jié)論正確的是(  )
A.λ-μ=0B.λ+μ=0C.2λ-μ=0D.2λ+μ=0

查看答案和解析>>

同步練習冊答案