16.若函數(shù)y=sin(2x+φ)為偶函數(shù),則φ的最小正數(shù)是( 。
A.$\frac{3π}{2}$B.πC.$\frac{π}{2}$D.$\frac{π}{4}$

分析 由條件根據(jù)正弦函數(shù)、余弦函數(shù)的奇偶性,利用誘導公式:可得 φ=kπ+$\frac{π}{2}$,k∈Z,從而得出結論.

解答 解:∵函數(shù)y=sin(2x+φ)為偶函數(shù),
根據(jù)誘導公式可得φ=$\frac{π}{2}$+kπ,k∈Z,
∴k=0時,φ取最小正數(shù)$\frac{π}{2}$.
故答案選:C.

點評 本題主要考查正弦函數(shù)、余弦函數(shù)的奇偶性,誘導公式,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

6.已知a1=1,點(an,an+1)在函數(shù)y=2x+3的圖象上.
(Ⅰ)求證:{an+3}是等比數(shù)列;
(Ⅱ)求{an}的通項公式;
(Ⅲ)求數(shù)列{n(an+3)}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.直線l經(jīng)過點A(-2,0),B(-5,3),則l的斜率為(  )
A.2B.-1C.0D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知某魚塘僅養(yǎng)殖著鯉魚和鯽魚,為了估計這兩種魚的數(shù)量,養(yǎng)殖者從魚塘中捕出這兩種魚各1000條,給每條魚做上不影響其存活的標記,然后放回魚塘,待完全混合后,再每次從魚塘中隨機地捕出1000條,記錄下其中有記號的魚的數(shù)目,然后立即放回魚塘中,這樣的記錄做了10次,并將記錄獲取的數(shù)據(jù)制作成如圖所示的莖葉圖
(I)根據(jù)莖葉圖計算有記號的鯉魚和鯽魚的平均數(shù);
(II)為了估計魚塘中魚的總重量,現(xiàn)按照(I)中的比例對100條魚進行稱重,所得稱重魚的重量介于[0,4.5](單位:千克)之間,將測量結果按如下方式分成九組:第一組[0,0.5),第二組[0.5,1),…,第九組[4,4.5],如圖是按上述分組方法得到的頻率分布直方圖的一部分.

(1)若第二、三、四組魚的條數(shù)成公差為7的等差數(shù)列,請將頻率分布直方圖補充完整;
(2)通過抽樣統(tǒng)計,初步估計魚塘里共有20000條魚,使在(1)的條件下估計該魚塘中魚重量的眾數(shù)及魚的總重量.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知a>0,x,y滿足約束條件$\left\{\begin{array}{l}{x≥1}\\{x+y≤3}\\{y≥a(x-3)}\end{array}\right.$,若z=2x+y的最小值為1,則a等于( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.函數(shù)y=3sin(2x+$\frac{π}{4}$),x∈[0,π]的單調遞減區(qū)間為[$\frac{π}{8}$,$\frac{5π}{8}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知正項數(shù)列{an},其前n項和Sn滿足6Sn=an2+3an+2,且a1,a2,a6是等比數(shù)列{bn}的前三項.
(1)求數(shù)列{an}與{bn}的通項公式;
(2)記Tn=a1b1+a2b2+…+anbn,n∈N*,求Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.函數(shù)f(x)=ex-x-3(x>0)的零點所在的區(qū)間是(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學 來源:2015-2016學年江蘇泰興中學高二上學期期末數(shù)學(文)試卷(解析版) 題型:解答題

已知復數(shù).試求實數(shù)分別為什么值時,分別為:(1)實數(shù);(2)虛數(shù);(3)純虛數(shù).

查看答案和解析>>

同步練習冊答案