【題目】如圖,P為⊙O外一點(diǎn),PC交⊙O于F,C,PA切⊙O于A(yíng),B為線(xiàn)段PA的中點(diǎn),BC交⊙O于D,線(xiàn)段PD的延長(zhǎng)線(xiàn)與⊙O交于E,連接FE.求證:
(Ⅰ)△PBD∽△CBP;
(Ⅱ)AP∥FE.
【答案】證明:(Ⅰ)如圖,∵PA切⊙O于A(yíng),∴BA2=BDBC,
∵B為線(xiàn)段PA的中點(diǎn),∴PB=BA,
∴PB2=BDBC,即,
∵∠PBD=∠CBP,∴△PBD∽△CBP.
(Ⅱ)∵△PBD∽△CBP,∴∠BPD=∠C,
∵∠C=∠E,∴∠BPD=∠E,
∴AP∥FE.
【解析】(Ⅰ)由切割線(xiàn)定理得BA2=BDBC,從而PB2=BDBC,由此能證明△PBD∽△CBP.
(Ⅱ)由三角形相似得∠BPD=∠C,從而∠BPD=∠E,由此能證明AP∥FE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在圓x2+y2﹣4x+2y=0內(nèi),過(guò)點(diǎn)E(1,0)的最長(zhǎng)弦和最短弦分別是AC和BD,則四邊形ABCD的面積為( )
A.
B.6
C.
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某村莊擬修建一個(gè)無(wú)蓋的圓柱形蓄水池(不計(jì)厚度).設(shè)該蓄水池的底面半徑為r米,高為h米,體積為V立方米.假設(shè)建造成本僅與表面積有關(guān),側(cè)面的建造成本為100元/平方米,底面的建造成本為160元/平方米,該蓄水池的總建造成本為12 000π元(π為圓周率).
(1)將V表示成r的函數(shù)V(r),并求該函數(shù)的定義域;
(2)討論函數(shù)V(r)的單調(diào)性,并確定r和h為何值時(shí)該蓄水池的體積最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中,正確的命題是
A. 任意三點(diǎn)確定一個(gè)平面
B. 三條平行直線(xiàn)最多確定一個(gè)平面
C. 不同的兩條直線(xiàn)均垂直于同一個(gè)平面,則這兩條直線(xiàn)平行
D. 一個(gè)平面中的兩條直線(xiàn)與另一個(gè)平面都平行,則這兩個(gè)平面平行
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是定義在上的奇函數(shù),且,若對(duì)任意的m,,,都有.
若,求a的取值范圍.
若不等式對(duì)任意和都恒成立,求t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于兩條平行直線(xiàn)和圓的位置關(guān)系定義如下:若兩直線(xiàn)中至少有一條與圓相切,則稱(chēng)該位置關(guān)系為“平行相切”;若兩直線(xiàn)都與圓相離,則稱(chēng)該位置關(guān)系為“平行相離”;否則稱(chēng)為“平行相交”.已知直線(xiàn)l1:ax+3y+6=0,l2:2x+(a+1)y+6=0與圓C:x2+y2+2x=b2-1(b>0)的位置關(guān)系是“平行相交”,則實(shí)數(shù)b的取值范圍為 ( )
A. (, ) B. (0, )
C. (0, ) D. (, )∪(,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給定下列四個(gè)命題:
若一個(gè)平面內(nèi)的兩條直線(xiàn)與另一個(gè)平面都平行,那么這兩個(gè)平面相互平行;
若一個(gè)平面經(jīng)過(guò)另一個(gè)平面的垂線(xiàn),那么這兩個(gè)平面相互垂直;
垂直于同一直線(xiàn)的兩條直線(xiàn)相互平行;
若兩個(gè)平面垂直,那么一個(gè)平面內(nèi)與它們的交線(xiàn)不垂直的直線(xiàn)與另一個(gè)平面也不垂直.
其中,為真命題的是
A. 和 B. 和 C. 和 D. 和
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的長(zhǎng)度單位建立坐標(biāo)系.已知直線(xiàn)的極坐標(biāo)方程為,曲線(xiàn)的參數(shù)方程為(為參數(shù)).
(1)求曲線(xiàn)的普通方程和直線(xiàn)的直角坐標(biāo)方程;
(2)直線(xiàn)上有一點(diǎn),設(shè)直線(xiàn)與曲線(xiàn)相交于兩點(diǎn),求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com