11.某廠生產(chǎn)的零件外徑ξ~N(10,0.04),今從該廠上、下午生產(chǎn)的零件中各取一件,測得外徑分別為10.5cm,9.3cm,則可認(rèn)為( 。
A.上午生產(chǎn)情況正常,下午生產(chǎn)情況異常
B.上午生產(chǎn)情況異常,下午生產(chǎn)情況正常
C.上、下午生產(chǎn)情況均正常
D.上、下午生產(chǎn)情況均不正常

分析 根據(jù)生產(chǎn)的零件外直徑符合正態(tài)分布,根據(jù)3σ原則,寫出零件大多數(shù)直徑所在的范圍,把所得的范圍,同兩個(gè)零件的外直徑進(jìn)行比較,得到結(jié)論.

解答 解:∵零件外直徑X~N(10,0.04),
∴根據(jù)3σ原則,在10+3×0.2=10.6(cm)與10-3×0.2=9.4(cm)之外時(shí)為異常.
∵上、下午生產(chǎn)的零件中各隨機(jī)取出一個(gè),測得其外直徑分別為10.5cm和9.3cm,9.3<9.4,
∴下午生產(chǎn)的產(chǎn)品異常,
故選:A.

點(diǎn)評 本題考查正態(tài)分布曲線的特點(diǎn)及曲線所表示的意義,考查3σ原則,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=lnx-ax(a>0)的單調(diào)遞增區(qū)間為(  )
A.(0,$\frac{1}{a}$)B.($\frac{1}{a}$,+∞)C.(-∞,$\frac{1}{a}$)D.(-∞,a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)全集U={(x,y)|x∈R,y∈R},集合$M=\left\{(x,y)\right|\frac{y-3}{x-2}=1\},P=\{(x,y)|y≠x+1\}$,P={(x,y)|y≠x+1},則∁U(M∪P)={(2,3)}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓Γ:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點(diǎn)($\sqrt{3}$,$\frac{1}{2}$),且離心率為$\frac{\sqrt{3}}{2}$.
(Ⅰ)求橢圓Γ方程;
(Ⅱ)設(shè)直線y=x+m與橢圓Γ交于不同兩點(diǎn)A,B,若點(diǎn)P(0,1)滿足|$\overrightarrow{PA}$|=|$\overrightarrow{PB}$|,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=lgx,x∈[1,100],則函數(shù)g(x)=[f(x)]2+f(x2)+1的值域是[1,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若函數(shù)f(x)=x3-f′(2)x2+3x-5,則f′(2)=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)k是一個(gè)正整數(shù),${(1+\frac{x}{k})^k}$的展開式中第三項(xiàng)的系數(shù)為$\frac{3}{8}$,任取x∈[0,4],y∈[0,16],則點(diǎn)(x,y)滿足條件y≤kx的概率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知f(x)是定義在R上的偶函數(shù),且當(dāng)x≤0時(shí),f(x)=2x+1+l.
(1)求f(1)的解析式;
(2)在所給的坐標(biāo)系內(nèi)畫出函數(shù)f(x)的草圖,并求方程2f(x)-m-l=0恰有兩個(gè)不同實(shí)根時(shí)實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)定義在R上的函數(shù)y=f(x)滿足f(x)•f(x+2)=12,且f(2017)=2,則f(3)=(  )
A.12B.6C.3D.2

查看答案和解析>>

同步練習(xí)冊答案