【題目】設(shè),在線段上任取兩點(diǎn)(端點(diǎn)A,B除外 ),將線段分成了三條線段,若分成的三條線段長(zhǎng)度均為正整數(shù),則這三條線段可以構(gòu)成三角形的概率是 ____________;若分成的三條線段的長(zhǎng)度均為正實(shí)數(shù),則這三條線段可以構(gòu)成三角形的概率是 _________.
【答案】
【解析】
若分成的三條線段的長(zhǎng)度均為正整數(shù),則三條線段的長(zhǎng)度的所有可能為:1,1,4;1,2,3;2,2,2共3種情況,其中只有三條線段為2,2,2時(shí)能構(gòu)成三角形,由古典概型的概念,得到概率.
三條線段的長(zhǎng)度均為正實(shí)數(shù)時(shí),則是幾何概型,設(shè)出變量,寫出全部結(jié)果所構(gòu)成的區(qū)域,和滿足條件的事件對(duì)應(yīng)的區(qū)域,注意整理三條線段能組成三角形的條件,求出面積,作比值得到概率.
若分成的三條線段的長(zhǎng)度均為正整數(shù),則三條線段的長(zhǎng)度的所有可能為:
1,1,4;1,2,3;1,3,2;1,4,1;
2,1,3;2,2,2;2,3,1;
3,1,2;3,2,1;
4,1,1共10種情況,其中只有三條線段為2,2,2時(shí)能構(gòu)成三角形
則構(gòu)成三角形的概率p.
(2)由題意知本題是一個(gè)幾何概型
設(shè)其中兩條線段長(zhǎng)度分別為x,y,
則第三條線段長(zhǎng)度為6﹣x﹣y,
則全部結(jié)果所構(gòu)成的區(qū)域?yàn)椋?/span>
0<x<6,0<y<6,0<6﹣x﹣y<6,
即為0<x<6,0<y<6,0<x+y<6
所表示的平面區(qū)域?yàn)槿切?/span>OAB;
若三條線段x,y,6﹣x﹣y,能構(gòu)成三角形,
則還要滿足,即為,
所表示的平面區(qū)域?yàn)槿切?/span>DEF,
由幾何概型知所求的概率為:P
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)f(x)在(0,+∞)上是減函數(shù),其實(shí)數(shù)m的取值范圍;
(2)若函數(shù)f(x)在(0,+∞)上存在兩個(gè)極值點(diǎn)x1,x2,證明:lnx1+lnx2>2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】的內(nèi)角,,所對(duì)邊分別為,,.已知.
(1) 求;
(2) 若為銳角三角形,且,求面積的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)在點(diǎn)處的切線方程;
(2)若存在極小值點(diǎn)與極大值點(diǎn),求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某組織在某市征集志愿者參加志愿活動(dòng),現(xiàn)隨機(jī)抽出60名男生和40名女生共100人進(jìn)行調(diào)查,統(tǒng)計(jì)出100名市民中愿意參加志愿活動(dòng)和不愿意參加志愿活動(dòng)的男女生比例情況,具體數(shù)據(jù)如圖所示.
(1)根據(jù)條件完成下列列聯(lián)表,并判斷是否有的把握認(rèn)為愿意參與志愿活動(dòng)與性別有關(guān)?
愿意 | 不愿意 | 總計(jì) | |
男生 | |||
女生 | |||
總計(jì) |
(2)現(xiàn)用分層抽樣的方法從愿意參加志愿活動(dòng)的市民中選取7名志愿者,再?gòu)闹谐槿?人作為隊(duì)長(zhǎng),求抽取的2人至少有一名女生的概率.
參考數(shù)據(jù)及公式:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,動(dòng)圓與圓外切,且與直線相切,該動(dòng)圓圓心的軌跡為曲線.
(1)求曲線的方程
(2)過(guò)點(diǎn)的直線與拋物線相交于兩點(diǎn),拋物線在點(diǎn)A的切線與交于點(diǎn)N,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系上放置一個(gè)邊長(zhǎng)為1的正方形,此正方形沿軸滾動(dòng)(向左或者向右均可),滾動(dòng)開(kāi)始時(shí),點(diǎn)在原點(diǎn)處,例如:向右滾動(dòng)時(shí),點(diǎn)的軌跡起初時(shí)以點(diǎn)為圓心,1為半徑的圓弧,然后以點(diǎn)與軸交點(diǎn)為圓心,長(zhǎng)度為半徑……,設(shè)點(diǎn)的縱坐標(biāo)與橫坐標(biāo)的函數(shù)關(guān)系式是,該函數(shù)相鄰兩個(gè)零點(diǎn)之間的距離為.
(1)寫出的值,并求出當(dāng)時(shí),點(diǎn)軌跡與軸所圍成的圖形的面積,研究該函數(shù)的性質(zhì)并填寫下面的表格:
函數(shù)性質(zhì) | 結(jié)論 | |
奇偶性 | ||
單調(diào)性 | 遞增區(qū)間 | |
遞減區(qū)間 | ||
零點(diǎn) |
(2)已知方程在區(qū)間上有11個(gè)根,求實(shí)數(shù)的取值范圍
(3)寫出函數(shù)的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,,,AC=4,D在AC上且AD:DC=3:1,當(dāng)∠AED最大時(shí),△AED的面積為( )
A.B.2C.3D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com