分析 (1)由曲線C的參數(shù)方程為$\left\{{\begin{array}{l}{x=4cosθ}\\{y=3sinθ}\end{array}}\right.$(θ為參數(shù)),利用cos2θ+sin2θ=1可得曲線C的直角坐標(biāo)方程.
(2)設(shè)直線l的參數(shù)方程為:$\left\{\begin{array}{l}{x=2+tcosα}\\{y=2+tsinα}\end{array}\right.$(α為參數(shù))代入曲線C的方程有:(7sin2α+9)t2+(36cosα+64sinα)t-44=0,設(shè)點(diǎn)A,B對(duì)應(yīng)的參數(shù)分別為t1,t2,可得t1+t2=0,即可得出.
解答 解:(1)由曲線C的參數(shù)方程為$\left\{{\begin{array}{l}{x=4cosθ}\\{y=3sinθ}\end{array}}\right.$(θ為參數(shù)),
利用cos2θ+sin2θ=1可得:曲線C的直角坐標(biāo)方程為:$\frac{x^2}{16}+\frac{y^2}{9}=1$.
(2)設(shè)直線l的參數(shù)方程為:$\left\{\begin{array}{l}{x=2+tcosα}\\{y=2+tsinα}\end{array}\right.$(α為參數(shù))
代入曲線C的方程有:(7sin2α+9)t2+(36cosα+64sinα)t-44=0,
設(shè)點(diǎn)A,B對(duì)應(yīng)的參數(shù)分別為t1,t2,則t1+t2=36cosα+64sinα=0,
∴tanα=-$\frac{9}{16}$,即直線l的斜率$-\frac{9}{16}$.
點(diǎn)評(píng) 本題考查了參數(shù)方程化為普通方程及其應(yīng)用、一元二次方程的根與系數(shù)的關(guān)系、三角函數(shù)基本關(guān)系式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2}$f($\frac{π}{4}$)>$\sqrt{3}$f($\frac{π}{3}$) | B. | $\sqrt{2}$f($\frac{π}{4}$)>f($\frac{π}{6}$) | C. | $\sqrt{2}$f($\frac{π}{4}$)<2f($\frac{π}{6}$) | D. | f($\frac{π}{4}$)>$\frac{1}{2}$f($\frac{π}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | A≤B≤C | B. | A≤C≤B | C. | B≤C≤A | D. | C≤B≤A |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com