16.用紅、黃、藍(lán)等6種顏色給如圖所示的五連圓涂色,要求相鄰兩個(gè)圓所涂顏色不能相同,且紅色至少要涂兩個(gè)圓,則不同的涂色方案種數(shù)為630(用數(shù)字作答).

分析 整體采用分類原理,局部采用分步原理,即可得出結(jié)論.

解答 解:整體采用分類原理,局部采用分步原理
第一類:涂兩個(gè)紅色圓 $4×C_5^1×C_5^1×C_4^1+C_5^1×C_5^1×C_5^1+C_5^1×(C_4^1+C_4^1×C_3^1)=605$
第二類:涂三個(gè)紅色圓 $C_5^1×C_5^1=25$
故共有630種涂色方案.
故答案為:630.

點(diǎn)評(píng) 本題考查排列、組合及簡(jiǎn)單計(jì)數(shù)問題,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.雙曲線x2-y2=-2的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.關(guān)于曲線C:x-2+y-2=1的下列說法:
(1)關(guān)于原點(diǎn)對(duì)稱;
(2)是封閉圖形,面積大于2π;
(3)不是封閉圖形,與⊙O:x2+y2=2無公共點(diǎn);
(4)與曲線D:|x|+|y|=2$\sqrt{2}$的四個(gè)交點(diǎn)恰為正方形的四個(gè)頂點(diǎn),
其中正確的序號(hào)是(1)(4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.質(zhì)檢部門對(duì)某品牌的小袋裝春茶產(chǎn)品進(jìn)行質(zhì)量檢測(cè),從抽檢的十袋一盒的盒裝茶葉中任取兩袋進(jìn)行檢測(cè),首先測(cè)茶葉的重量,在重量符合標(biāo)準(zhǔn)的情況下,再對(duì)茶葉的農(nóng)藥殘留量進(jìn)行檢測(cè),兩項(xiàng)均符合標(biāo)準(zhǔn)定為合格產(chǎn)品,否則定為不合格產(chǎn)品,若兩袋均合格,方可上架銷售,檢測(cè)時(shí)只要檢測(cè)出不合格產(chǎn)品,則停止檢測(cè),該批產(chǎn)品禁止上架銷售,現(xiàn)已知抽檢的十袋茶葉中,有一袋茶葉的重量不符合標(biāo)準(zhǔn)但農(nóng)藥殘留量達(dá)標(biāo),有一袋茶葉的茶葉重量符合標(biāo)準(zhǔn)但農(nóng)藥殘留量超標(biāo),其余8袋均合格.
(Ⅰ)求這批茶葉被定為不合格產(chǎn)品的概率;
(Ⅱ)若檢測(cè)茶葉重量每次需費(fèi)用10元,檢測(cè)農(nóng)藥殘留量每次需費(fèi)用100元,設(shè)完成這批茶葉檢測(cè)所需費(fèi)用為隨機(jī)變量ξ,求隨機(jī)變量ξ分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)cos(α-$\frac{π}{6}$)=$\frac{15}{17}$,α∈($\frac{π}{6}$,$\frac{π}{2}$),則cosα的值為$\frac{{15\sqrt{3}-8}}{34}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖,△ABC為正三角形,AA1∥BB1∥CC1,CC1⊥底面△ABC,若BB1=2AA1=2,AB=CC1=3AA1,則多面體ABC-A1B1C1在平面A1ABB1上的投影的面積為( 。
A.$\frac{27}{4}$B.$\frac{9}{2}$C.9D.$\frac{27}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.遠(yuǎn)古時(shí)期,人們通過在繩子上打結(jié)來記錄數(shù)量,即“結(jié)繩計(jì)數(shù)”,如圖所示的是一位母親記錄的孩子自出生后的天數(shù),在從右向左依次排列的不同繩子上打結(jié),滿七進(jìn)一,根據(jù)圖示可知,孩子已經(jīng)出生的天數(shù)是( 。
A.336B.510C.1326D.3603

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知α∈(-$\frac{π}{4}$,0),β∈($\frac{π}{2}$,π),cos(α+β)=-$\frac{4}{5}$,cos(β-$\frac{π}{4}$)=$\frac{5}{13}$,則cos(α+$\frac{π}{4}$)=$\frac{16}{65}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知x、y取值如表:
x014568
y1.3m5.66.17.49.3
從所得的散點(diǎn)圖分析可知:y與x線性相關(guān),且$\widehaty$=0.95x+1.45,則實(shí)數(shù)m=1.8.

查看答案和解析>>

同步練習(xí)冊(cè)答案