1.如圖,△ABC為正三角形,AA1∥BB1∥CC1,CC1⊥底面△ABC,若BB1=2AA1=2,AB=CC1=3AA1,則多面體ABC-A1B1C1在平面A1ABB1上的投影的面積為( 。
A.$\frac{27}{4}$B.$\frac{9}{2}$C.9D.$\frac{27}{2}$

分析 根據(jù)題意,畫出多面體ABC-A1B1C1在平面A1ABB1上的投影圖形,求出投影面積即可.

解答 解:根據(jù)題意,多面體ABC-A1B1C1在平面A1ABB1上的投影是幾何體的正視圖,
如圖所示;
所以該投影面的面積為
3×3-$\frac{1}{2}$×2×1.5-$\frac{1}{2}$×1×1.5=$\frac{27}{4}$.
故選:A.

點(diǎn)評 本題考查了簡單空間圖形三視圖的應(yīng)用問題,解題時應(yīng)熟練掌握三視圖的作法以及平行投影的投影規(guī)則,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)不等式x2+y2≤1表示的平面區(qū)域?yàn)镈,在區(qū)域D內(nèi)隨機(jī)取一個點(diǎn),則|x|+|y|≥1的概率是(  )
A.$\frac{π-1}{π}$B.$\frac{2}{π}$C.$\frac{1}{π}$D.$\frac{π-2}{π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.為了解某社區(qū)居民的家庭年收入與年支出的關(guān)系,隨機(jī)調(diào)查了該社區(qū)5戶家庭,得到如表統(tǒng)計(jì)數(shù)據(jù)表:
收入x(萬元)8.28.610.011.311.9
支出y(萬元)5.26.57.07.58.8
根據(jù)上表可得回歸直線方程$\widehat{y}$=$\widehat$x+$\widehat{a}$,其中$\widehat$=0.76,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$,據(jù)此估計(jì),該社區(qū)一戶收入為15萬元家庭年支出為( 。┤f元.
A.10.8B.11.8C.12.8D.9.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖所示,在以AB為直徑的半圓周上,有異于A,B的六個點(diǎn)C1,C2,…,C6,直徑AB上有異于A,B的四個點(diǎn)D1,D2,D3,D4,則:
(1)以這12個點(diǎn)(包括A,B)中的4個點(diǎn)為頂點(diǎn),可作出多少個四邊形?
(2)以這10個點(diǎn)(不包括A,B)中的3個點(diǎn)為頂點(diǎn),可作出多少個三角形?其中含點(diǎn)C1的有多少個?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.用紅、黃、藍(lán)等6種顏色給如圖所示的五連圓涂色,要求相鄰兩個圓所涂顏色不能相同,且紅色至少要涂兩個圓,則不同的涂色方案種數(shù)為630(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如表提供的是兩個具有線性相關(guān)的數(shù)據(jù),現(xiàn)求得回歸方程為$\widehat{y}$=0.7x+0.35,則t等于(  )
x3456
y2.5t44.5
A.4.5B.3.5C.3.15D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知F1,F(xiàn)2是雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左右焦點(diǎn),以F1F2為直徑的圓與雙曲線在第一象限的交點(diǎn)為P,過點(diǎn)P向x軸作垂線,垂足為H,若|PH|=a,則雙曲線的離心率為(  )
A.$\frac{5}{2}$B.$\frac{3}{2}$C.$\frac{{\sqrt{5}+1}}{2}$D.$\frac{{\sqrt{6}+1}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知x、y取值如表:
x014568
y1.3m5.66.17.49.3
從所得的散點(diǎn)圖分析可知:y與x線性相關(guān),且$\widehaty$=0.95x+1.45,則m=(  )
A.1.5B.1.55C.3.5D.1.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.一排路燈共10盞,關(guān)閉其中3盞且不相鄰,有多少種不同的情況.

查看答案和解析>>

同步練習(xí)冊答案