分析 由實際問題設出P與地面高度與時間t的關系,f(t)=Acos(ωt+φ)+B(A>0,ω>0,φ∈[0,2π)),由題意求出三角函數(shù)中的參數(shù)A,B,及周期T,利用三角函數(shù)的周期公式求出ω,通過初始位置求出φ,從而得解.
解答 解:由題意,T=12,∴ω=$\frac{π}{6}$,
設h(t)=Acos(ωt+φ)+B,(A>0,ω>0,φ∈[0,2π)),則 $\left\{\begin{array}{l}{A+B=18}\\{-A+B=2}\end{array}\right.$,
∴A=8,B=10,可得:h(t)=8cos($\frac{π}{6}$t+φ)+10,
∵P的初始位置在最低點,t=0時,有:h(t)=2,即:8cosφ+10=2,解得:φ=2kπ+π,k∈Z,
∴φ=π,
∴h與t的函數(shù)關系為:h(t)=8cos($\frac{π}{6}$t+π)+10=10-8cos$\frac{π}{6}$t,(t≥0),當t=8時,h(8)=10-8cos($\frac{π}{6}$×8)=14,
故答案為:14,$h(t)=-8cos\frac{π}{6}t+10$(t≥0).
點評 本題考查通過實際問題得到三角函數(shù)的性質,由性質求三角函數(shù)的解析式;考查y=Asin(ωx+φ)中參數(shù)的物理意義,注意三角函數(shù)的模型的應用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{3}{4}$ | B. | -$\frac{1}{5}$ | C. | $\frac{1}{5}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 22條 | B. | 30條 | C. | 12條 | D. | 20條 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | g(x)=m,其中m為常數(shù),且m∈(-2$\sqrt{2}$,-$\sqrt{2}$) | B. | g(x)=-($\frac{1}{2}$)x | ||
C. | g(x)=m,其中m為常數(shù),且m∈(-2,-$\sqrt{2}$) | D. | g(x)=-ln(-x) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com