4.已知a∈R,函數(shù)f(x)=$\frac{1}{2}$ax2-lnx,討論f(x)的單調(diào)性.

分析 先求出函數(shù)的導(dǎo)數(shù),通過討論a的取值范圍求出函數(shù)的單調(diào)區(qū)間.

解答 解:∵f′(x)=ax-$\frac{1}{x}$=$\frac{{ax}^{2}-1}{x}$(x>0),
a≤0時,f′(x)<0,f(x)的單調(diào)遞減區(qū)間為:(0,+∞),
a>0時,f(x)在(0,$\frac{\sqrt{a}}{a}$)遞減,在($\frac{\sqrt{a}}{a}$,+∞)遞增.

點評 本題考察了函數(shù)的單調(diào)性,導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.(理科)在(1-x2)(1+x)10的展開式中,x5的系數(shù)是132(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知不等式組$\left\{\begin{array}{l}y≤-x+2\\ y≥kx+1\\ x≥0\end{array}\right.$所表示的平面區(qū)域為面積等于1的三角形,則實數(shù)k的值為$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在平面直角坐標系xOy中,曲線C:$\left\{\begin{array}{l}{x=\sqrt{6}cosα}\\{y=\sqrt{2}sinα}\end{array}\right.$(α為參數(shù)).以原點O為極點,x軸正半軸為極軸,建立坐標系,直線l的極坐標方程為ρ(cosθ+$\sqrt{3}$sinθ)+4=0,求曲線C上的點到直線l的最大距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)函數(shù)f(x)=x-asinx,x∈[0,$\frac{π}{2}$].
(Ⅰ)當a=2時,求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)≤cosx,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若函數(shù)f(x)=(x2+mx)ex(e為自然對數(shù)的底)的單調(diào)遞減區(qū)間是[-$\frac{3}{2}$,1],則實數(shù)m=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{{2e}^{x}}{1{+x}^{2}}$(e為自然對數(shù)的底數(shù)),若m>4(ln2-1).求證:當x>0時,f(x)>$\frac{{2x}^{2}-mx+2}{1{+x}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖:已知⊙O是△ABC的外接圓,AB=BC,AH是BC邊上的高,延長交⊙O于點D,AE是⊙O的直徑.
(1)求證:AE•BH=BD•AB;
(2)過點C作⊙O的切線,交BA延長線于點F,若AF=2,CF=4,求AC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在極坐標系中,點A的極坐標是(1,π),點P是曲線C:ρ=2sinθ上的一個動點,則|PA|的取值范圍是$[\sqrt{2}-1,\sqrt{2}+1]$.

查看答案和解析>>

同步練習(xí)冊答案