分析 由已知得f(x)的定義域為(0,+∞),求出g(x),令h(x)=f(x)+g(x),由此利用導(dǎo)數(shù)性質(zhì)能求出函數(shù)h(x)的單調(diào)區(qū)間即可.
解答 解:a=0時,g(x)=-x+1,
∴f(x)+g(x)=xlnx-x+1,(x>0),
令h(x)=f(x)+g(x),則g′(x)=lnx,
由g′(x)>0,得x>1;由g′(x)<0,得0<x<1.
∴g(x)的增區(qū)間為(1,+∞),單調(diào)減區(qū)間為(0,1).
點評 本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性等基礎(chǔ)知識,同時考查推理論證能力,分類討論等綜合解題能力,解題時要認真審題,注意導(dǎo)數(shù)性質(zhì)的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f′(3)<f′(4)<f(4)-f(3)<0 | B. | f′(3)<f(4)-f(3)<f′(4)<0 | C. | f′(4)<f(4)-f(3)<f′(3)<0 | D. | f(4)-f(3)<f′(4)<f′(3)<0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{9π}{2}$ | B. | $\frac{27π}{8}$ | C. | 36π | D. | 8π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 52 | B. | 34+9$\sqrt{2}$ | C. | 64 | D. | 34+8$\sqrt{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com