12.在△ABC中,邊AB的垂直平分線交邊AC于D,若C=$\frac{π}{3}$,BC=8,BD=7,則△ABC的面積為20$\sqrt{3}$,或24$\sqrt{3}$.

分析 如圖所示,△BCD中,設CD=x,由余弦定理可得:${7}^{2}={x}^{2}+{8}^{2}-2×8×x×cos\frac{π}{3}$,解出x,再利用三角形面積計算公式即可得出.

解答 解:如圖所示,
△BCD中,設CD=x,
由余弦定理可得:${7}^{2}={x}^{2}+{8}^{2}-2×8×x×cos\frac{π}{3}$,
化為:x2-8x+15=0,
解得x=3,或5.
∴AC=10,或12.
∴S△ABC=$\frac{1}{2}CA•CB•$sinC=20$\sqrt{3}$,或24$\sqrt{3}$.
故答案為:20$\sqrt{3}$,或24$\sqrt{3}$.

點評 本題考查了余弦定理、三角形面積計算公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.若函數(shù)f(x)=x2+ax(a∈R),則下列結論正確的是(  )
A.存在a∈R,使f (x)是偶函數(shù)
B.存在a∈R,f (x)是奇函數(shù)
C.對于任意的a∈R,f (x)在(0,+∞)上是增函數(shù)
D.對于任意的a∈R,f (x)在(0,+∞)上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.在平面直角坐標系中O(0,0),P(1,2),將向量$\overrightarrow{OP}$按逆時針旋轉$\frac{π}{2}$后,得向量$\overrightarrow{OQ}$,則Q的坐標是( 。
A.(-2,1)B.(-1,2)C.(1,-2)D.(2,-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.若函數(shù)f(x)=ax3+x+1有極值,則a的取值范圍是a<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.6月23日15時前后,江蘇鹽城市阜寧、射陽等地突遭強冰雹、龍卷風雙重災害襲擊,風力達12級.災害發(fā)生后,有甲、乙、丙、丁4個輕型救援隊從A,B,C,D四個不同的方向前往災區(qū).
已知下面四種說法都是正確的.
(1)甲輕型救援隊所在方向不是C方向,也不是D方向; 
(2)乙輕型救援隊所在方向不是A方向,也不是B方向; 
(3)丙輕型救援隊所在方向不是A方向,也不是B方向; 
(4)丁輕型救援隊所在方向不是A方向,也不是D方向.
此外還可確定:如果丙所在方向不是D方向,那么甲所在方向就不是A方向.有下列判斷:
①甲所在方向是B方向;②乙所在方向是D方向;③丙所在方向是D方向;④丁所在方向是C方向.
其中判斷正確的序號是③.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.畫出函數(shù)f(x)=|x2-4x-5|的圖象,并寫出函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.函數(shù)f(x)=$\frac{{e}^{x}-1}{{e}^{x}+1}$,g(x)=f(x-1)+1,an=g($\frac{1}{n}$)+g($\frac{2}{n}$)+g($\frac{3}{n}$)+…+g($\frac{2n-1}{n}$),n∈N*
(1)求函數(shù){an}的通項公式;
(2)設bn=$\frac{1}{{a}_{n}a_{n+1}}$,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.若函數(shù)f(x)=$\sqrt{{x}^{2}+ax+1}$的定義域為R,則實數(shù)a取值范圍是(  )
A.[-2,2]B.(2,+∞)C.(-∞,2)D.(-2,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知函數(shù)f(x)=3sin(ωx+$\frac{π}{3}$)(ω>0)的最小正周期為π,則f(x)的圖象( 。
A.關于直線$x=\frac{π}{4}$對稱B.關于點$(\frac{π}{4},0)$對稱
C.關于直線$x=\frac{π}{12}$對稱D.關于點$(\frac{π}{12},0)$對稱

查看答案和解析>>

同步練習冊答案