【題目】已知,函數(shù).
(1)若關(guān)于的方程的解集中恰有一個元素,求的值;
(2)設(shè),若對任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過,求的取值范圍.
【答案】(1)或.(2)
【解析】
(1)代入解析式表示出方程并化簡,對二次項系數(shù)分類討論與,即可確定只有一個元素時的值;
(2)由對數(shù)函數(shù)性質(zhì)可知函數(shù)在區(qū)間上單調(diào)遞減,由題意代入可得,化簡不等式并分離參數(shù)后構(gòu)造函數(shù),利用函數(shù)的單調(diào)性求出構(gòu)造函數(shù)的最值,即可求得的取值范圍.
(1)關(guān)于的方程,
代入可得,
由對數(shù)運算性質(zhì)可得,化簡可得,
當時,代入可得,解得,代入經(jīng)檢驗可知,
滿足關(guān)于的方程的解集中恰有一個元素,
當時,則,解得,
再代入方程可解得,代入經(jīng)檢驗可知,
滿足關(guān)于的方程的解集中恰有一個元素,
綜上可知,或.
(2)若,對任意,函數(shù)在區(qū)間上單調(diào)遞減,
由題意可知,
化簡可得,即,所以,
令
,
當時,,當時,
,設(shè),
設(shè),
,
,
所以在是增函數(shù),,
,
則的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,且過點.
(Ⅰ)求橢圓的方程;
(Ⅱ)過橢圓的左焦點的直線與橢圓交于兩點,直線過坐標原點且與直線的斜率互為相反數(shù).若直線與橢圓交于兩點且均不與點重合,設(shè)直線與軸所成的銳角為,直線與軸所成的銳角為,判斷與的大小關(guān)系并加以證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2a·4x-2x-1.
(1)當a=1時,解不等式f(x)>0;
(2)當a=,x∈[0,2]時,求f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當時,(i)求曲線在點處的切線方程;
(ii)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,求證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
若曲線在處的切線斜率為0,求a的值;
(Ⅱ)若恒成立,求a的取值范圍;
(Ⅲ)求證:當時,曲線 (x>0)總在曲線的上方.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從高一年級隨機選取100名學生,對他們期中考試的數(shù)學和語文成績進行分析,成績?nèi)鐖D所示.
(Ⅰ)從這100名學生中隨機選取一人,求該生數(shù)學和語文成績均低于60分的概率;
(II)從語文成績大于80分的學生中隨機選取兩人,記這兩人中數(shù)學成績高于80分的人數(shù)為,求的分布列和數(shù)學期望(;
(Ill)試判斷這100名學生數(shù)學成績的方差與語文成績的方差的大小.(只需寫出結(jié)論).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com