【題目】對(duì)于函數(shù),若存在定義域中的實(shí)數(shù),滿(mǎn)足,則稱(chēng)函數(shù)類(lèi)函數(shù).

1)試判斷,是否是類(lèi)函數(shù),并說(shuō)明理由;

2)若函數(shù),,類(lèi)函數(shù),求的最小值.

【答案】1)不是.見(jiàn)解析(2)最小值為7.

【解析】

1)不是,假設(shè)類(lèi)函數(shù),得到或者,代入驗(yàn)證不成立.

2,得到函數(shù)的單調(diào)區(qū)間,根據(jù)題意得到

,得到,得到答案.

1)不是.

假設(shè)類(lèi)函數(shù),則存在,使得,

,或者,

當(dāng),時(shí),有,,

所以,可得,不成立;

當(dāng),時(shí),有

所以,不成立,

所以不為類(lèi)函數(shù).

(2),則單調(diào)遞減,在單調(diào)遞增,

又因?yàn)?/span>類(lèi)函數(shù),

所以存在,滿(mǎn)足,

由等式可得:,則,

所以,

,所以得,

從而有,則有,即,

所以,則,

,則,

,當(dāng)時(shí),,且,,且連續(xù)不斷,由零點(diǎn)存在性定理可得存在,

使得,此時(shí),因此的最小值為7.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(1)求不等式的解集;

(2)若對(duì)一切,均有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種體育比賽的規(guī)則是:進(jìn)攻隊(duì)員與防守隊(duì)員均在安全線(xiàn)的垂線(xiàn)上(為垂足),且分別位于距的點(diǎn)和點(diǎn)處,進(jìn)攻隊(duì)員沿直線(xiàn)向安全線(xiàn)跑動(dòng),防守隊(duì)員沿直線(xiàn)方向攔截,設(shè)交于點(diǎn),若在點(diǎn),防守隊(duì)員比進(jìn)攻隊(duì)員先到或同時(shí)到,則進(jìn)攻隊(duì)員失敗,已知進(jìn)攻隊(duì)員速度是防守隊(duì)員速度的兩倍,且他們雙方速度不變,問(wèn)進(jìn)攻隊(duì)員的路線(xiàn)應(yīng)為什么方向才能取勝?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C: ,直線(xiàn)l過(guò)點(diǎn).

1)若直線(xiàn)l與圓心C的距離為1,求直線(xiàn)l的方程;

2)若直線(xiàn)l與圓C交于MN兩點(diǎn),且,求以MN為直徑的圓的方程;

3)設(shè)直線(xiàn)與圓C交于A,B兩點(diǎn),是否存在實(shí)數(shù)a,使得直線(xiàn)l垂直平分弦AB?若存在,求出實(shí)數(shù)a的值;若不存在,說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著互聯(lián)網(wǎng)技術(shù)的快速發(fā)展,人們更加關(guān)注如何高效地獲取有價(jià)值的信息,網(wǎng)絡(luò)知識(shí)付費(fèi)近兩年呈現(xiàn)出爆發(fā)式的增長(zhǎng),為了了解網(wǎng)民對(duì)網(wǎng)絡(luò)知識(shí)付費(fèi)的態(tài)度,某網(wǎng)站隨機(jī)抽查了歲及以上不足歲的網(wǎng)民共人,調(diào)查結(jié)果如下:

(1)請(qǐng)完成上面的列聯(lián)表,并判斷在犯錯(cuò)誤的概率不超過(guò)的前提下,能否認(rèn)為網(wǎng)民對(duì)網(wǎng)絡(luò)知識(shí)付費(fèi)的態(tài)度與年齡有關(guān)?

(2)在上述樣本中用分層抽樣的方法,從支持和反對(duì)網(wǎng)絡(luò)知識(shí)付費(fèi)的兩組網(wǎng)民中抽取名,若在上述名網(wǎng)民中隨機(jī)選人,求至少1人支持網(wǎng)絡(luò)知識(shí)付費(fèi)的概率.

附:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù),若在定義域內(nèi)存在實(shí)數(shù)x,滿(mǎn)足,其中k為整數(shù),則稱(chēng)函數(shù)為定義域上的“k階局部奇函數(shù)”.

(1)已知函數(shù),試判斷是否為上的“2階局部奇函數(shù)”?并說(shuō)明理由;

(2)若上的“1階局部奇函數(shù)”,求實(shí)數(shù)m的取值范圍;

(3)若,對(duì)任意的實(shí)數(shù),函數(shù)恒為上的“k階局部奇函數(shù)”,求整數(shù)k取值的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方體的棱長(zhǎng)為,點(diǎn)E,FG分別為棱AB,,的中點(diǎn),下列結(jié)論中,正確結(jié)論的序號(hào)是___________.

①過(guò)EF,G三點(diǎn)作正方體的截面,所得截面為正六邊形;

平面EFG;

平面;

④異面直線(xiàn)EF所成角的正切值為;

⑤四面體的體積等于.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|x+6|﹣|m﹣x|(m∈R)

(1)當(dāng)m=3時(shí),求不等式f(x)≥5的解集;

(2)若不等式f(x)≤7對(duì)任意實(shí)數(shù)x恒成立,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案