12.已知全集U=R,集合A={x|x>4},B={x|-6<x<6}.
(1)求A∩B和A∪B;
(2)求∁UB;
(3)定義A-B={x|x∈A,且x∉B},求A-B,A-(A-B).

分析 (1),(2)根據(jù)集合交集、并集、補集的運算法則,代入計算可得答案,
(3)根據(jù)新定義即可求出答案.

解答 解:(1)∵集合A={x|x>4},B={x|-6<x<6},
∴A∩B={x|4<x<6},A∪B={x|x>4},
(2)∁UB={x|x≤-6或x≥6},
(3)∵定義A-B={x|x∈A,且x∉B},
∴A-B=A∩∁UB={x|x≥6},
∴A-(A-B)={x|4<x<6}

點評 本題考查的知識點是交,并,補的混合運算,熟練掌握集合的運算規(guī)則是解答的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

2.已知數(shù)列{bn}(n∈N*)是遞增的等比數(shù)列,且b1+b3=5,b1•b3=4.
(Ⅰ)若an=log2bn+3,證明:數(shù)列{an}是等差數(shù)列;
(Ⅱ)若cn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)y=f(x),若在定義域內(nèi)存在x0,使得f(-x0)=-f(x0)成立,則稱x0為函數(shù)f(x)的局部對稱點.
(I)若a∈R且a≠0,求函數(shù)f(x)=ax2+x-a的“局部對稱點”;
(II)若函數(shù)f(x)=4x-m•2x+1+m2-3在R上有局部對稱點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.( I)已知x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=3,計算:$\frac{{x}^{2}+{x}^{-2}-7}{x+{x}^{-1}+3}$;
( II)求(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$-(-9.6)0-(3$\frac{3}{8}$)${\;}^{-\frac{2}{3}}$+(1.5)-2的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.設橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點為F,離心率為$\frac{\sqrt{3}}{3}$,過點F且與x軸垂直的直線被橢圓截得的線段長為$\frac{4\sqrt{3}}{3}$,求橢圓的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.設F1,F(xiàn)2分別是橢圓$\frac{x^2}{4}+{y^2}$=1的左、右焦點.
(1)若M是該橢圓上的一點,且∠F1MF2=120°,求△F1MF2的面積;
(2)若P是該橢圓上的一個動點,求$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.(1)求不等式a2x-1>ax+2(a>0,且a≠1)中x的取值范圍(用集合表示).
(2)已知f(x)是定義在R上的奇函數(shù),且當x>0時,f(x)=$\sqrt{x}$+1,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.函數(shù)f(x)=2|x|的定義域為[a,b],值域為[1,4],方程b=g(a)表示的圖形可以是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.如圖所示,在空間四邊形ABCD中,E,F(xiàn)分別為AB,AD的中點,G,H分別在BC,CD上,且BG:GC=DH:HC=1:2,求證:
(1)E,F(xiàn),G,H四點共面;
(2)EG與HF的交點在直線AC上.

查看答案和解析>>

同步練習冊答案