分析 (1)由已知利用同角三角函數(shù)基本關(guān)系式可求sinB的值,利用特殊角的三角函數(shù)值,三角形內(nèi)角和定理,兩角和的正弦函數(shù)公式即可解得sinA的值.
(2)由(1)及正弦定理可得b=$\frac{asinB}{sinA}$的值,利用三角形面積公式即可計(jì)算得解.
解答 解:(1)在△ABC中,∵cosB=$\frac{3}{5}$,∠C=$\frac{π}{4}$,
∴sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{4}{5}$,
∴sinA=sin(B+C)=sinBcosC+cosBsinC=$\frac{4}{5}$×$\frac{\sqrt{2}}{2}$+$\frac{3}{5}$×$\frac{\sqrt{2}}{2}$=$\frac{7\sqrt{2}}{10}$,
(2)∵由(1)可得:a=2,sinB=$\frac{4}{5}$,sinA=$\frac{7\sqrt{2}}{10}$,
∴由正弦定理可得:b=$\frac{asinB}{sinA}$=$\frac{2×\frac{4}{5}}{\frac{7\sqrt{2}}{10}}$=$\frac{8\sqrt{2}}{7}$,
∴S△ABC=$\frac{1}{2}$absinC=$\frac{1}{2}×2×\frac{8\sqrt{2}}{7}×\frac{\sqrt{2}}{2}$=$\frac{8}{7}$.
點(diǎn)評(píng) 本題主要考查了同角三角函數(shù)基本關(guān)系式,特殊角的三角函數(shù)值,三角形內(nèi)角和定理,兩角和的正弦函數(shù)公式,正弦定理,三角形面積公式在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (k-$\frac{1}{8}$,k+$\frac{1}{8}$),k∈Z | B. | (2k-$\frac{1}{8}$,2k+$\frac{1}{8}$),k∈Z | C. | (4k-$\frac{1}{8}$,4k+$\frac{1}{8}$),k∈Z | D. | (8k-$\frac{1}{8}$,8k+$\frac{1}{8}$),k∈Z |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2 | C. | $\sqrt{5}$ | D. | $\frac{\sqrt{5}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\root{3}{a}$•$\sqrt{-a}$=-a${\;}^{\frac{5}{6}}$ | B. | x${\;}^{\frac{2}{4}}$=$\sqrt{x}$ | C. | ($\root{3}{^{\frac{3}{2}}}$)${\;}^{\frac{3}{2}}$=b3 | D. | (a-b)${\;}^{-\frac{5}{2}}$=$\sqrt{(a-b)^{-5}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com