7.下面為函數(shù)y=xsinx+cosx的遞增區(qū)間的是( 。
A.($\frac{π}{2}$,$\frac{3π}{2}$)B.(π,2π)C.(0,$\frac{π}{2}$)D.(2π,3π)

分析 求導(dǎo)得y'=xcosx,令導(dǎo)函數(shù)大于零,求出x的范圍即可.

解答 解:∵y=xsinx+cosx,
∴y'=sinx+xcosx-sinx=xcosx,
即xcosx>0,
顯然0<x<$\frac{π}{2}$時(shí),cosx>0,符合題意,
故選:C.

點(diǎn)評(píng) 考察了符合函數(shù)求導(dǎo)和利用導(dǎo)函數(shù)判斷函數(shù)的單調(diào)性,是常規(guī)題型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.下列命題中
①“A∩B=A”成立的必要條件是“A?B”;
②“若x2+y2≠0,則x,y全不為0”的否定;
③“全等三角形是相似三角形”的否命題;
④?x∈R都有$\sqrt{{x}^{2}+2}$+$\frac{1}{\sqrt{{x}^{2}+2}}$≥2成立.
真命題為②④(填所有真命題序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知函數(shù)f(x)=ex-ax在(3,+∞)單調(diào)遞增,則實(shí)數(shù)a的取值范圍是(-∞,e3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.某市在“國(guó)際禁毒日”期間,連續(xù)若干天發(fā)布了“珍愛(ài)生命,遠(yuǎn)離毒品”的電視公益廣告,期望讓更多的市民知道毒品的危害性.禁毒志愿者為了了解這則廣告的宣傳效果,隨機(jī)抽取了100名年齡階段在[10,20),[20,30),[30,40),[40,50),[50,60)的市民進(jìn)行問(wèn)卷調(diào)查,由此得到樣本頻率分布直方圖如圖所示.
(1)從不小于40歲的人中按年齡段分層抽樣的方法隨機(jī)抽取5人,求[50,60)年齡段抽取的人數(shù);
(2)從(1)中方式得到的5人中在抽取2人作為本次活動(dòng)的獲獎(jiǎng)?wù),求[50,60)年齡段僅1人獲獎(jiǎng)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若x<0,求f(x)=$\frac{12}{x}$+3x的最大值(  )
A.-6B.-12C.-36D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知f(x)=$\frac{1}{{e}^{x}+a}$+b(a≠-1)是奇函數(shù),則b(a+1)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若令cos80°=m,則tan(-440°)=(  )
A.$\frac{\sqrt{1-{m}^{2}}}{|m|}$B.$\frac{\sqrt{1-{m}^{2}}}{-m}$C.$\frac{\sqrt{1+{m}^{2}}}{m}$D.$\frac{\sqrt{1-{m}^{2}}}{m}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè)橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a,b>0)經(jīng)過(guò)點(diǎn)M(2,$\sqrt{2}$),N($\sqrt{6}$,1),O為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓E的方程;
(Ⅱ)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒在兩個(gè)交點(diǎn)A、B且$\overrightarrow{OA}⊥\overrightarrow{OB}$?若存在,寫(xiě)出該圓的方程,并求|AB|的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.某工廠新招了8名工人,其中有2名車(chē)工和3名鉗工,現(xiàn)將這8名工人平均分配給甲、乙兩個(gè)車(chē)間,那么車(chē)工和鉗工均不能分配到同一個(gè)車(chē)間的概率為$\frac{18}{35}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案