分析 (Ⅰ)由橢圓的離心率及過(guò)點(diǎn)過(guò)M(2,$\sqrt{2}$),N($\sqrt{6}$,1)列出方程組求出a,b,由此能求出橢圓E的方程.
(2)假設(shè)存在這樣的圓,設(shè)該圓的切線為y=kx+m,與橢圓聯(lián)立,得(1+2k2)x2+4kmx+2m2-8=0,由此利用根的判別式、韋達(dá)定理、圓的性質(zhì),結(jié)合已知條件能求出|AB|的取值范圍.
解答 解:(Ⅰ)∵橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a,b>0)過(guò)M(2,$\sqrt{2}$),N($\sqrt{6}$,1)兩點(diǎn),
∵$\left\{{\begin{array}{l}{\frac{4}{a^2}+\frac{2}{b^2}=1}\\{\frac{6}{a^2}+\frac{1}{b^2}=1}\end{array}}\right.$,解得:$\left\{{\begin{array}{l}{\frac{1}{a^2}=\frac{1}{8}}\\{\frac{1}{b^2}=\frac{1}{4}}\end{array}}\right.$,
∴$\left\{{\begin{array}{l}{{a^2}=8}\\{{b^2}=4}\end{array}}\right.$,
橢圓E的方程為$\frac{x^2}{8}+\frac{y^2}{4}=1$…(2分)
(Ⅱ)假設(shè)存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且$\overrightarrow{OA}⊥\overrightarrow{OB}$,
設(shè)該圓的切線方程為y=kx+m,解方程組$\left\{{\begin{array}{l}{y=kx+m}\\{\frac{x^2}{8}+\frac{y^2}{4}=1}\end{array}}\right.$,得x2+2(kx+m)2=8,即(1+2k2)x2+4kmx+2m2-8=0,
則△=16k2m2-4(1+2k2)(2m2-8)=8(8k2-m2+4)>0,即8k2-m2+4>0,$\left\{{\begin{array}{l}{{x_1}+{x_2}=-\frac{4km}{{1+2{k^2}}}}\\{{x_1}{x_2}=\frac{{2{m^2}-8}}{{1+2{k^2}}}}\end{array}}\right.$….(4分)
${y_1}{y_2}=(k{x_1}+m)(k{x_2}+m)={k^2}{x_1}{x_2}+km({x_1}+{x_2})+{m^2}=\frac{{{k^2}(2{m^2}-8)}}{{1+2{k^2}}}-\frac{{4{k^2}{m^2}}}{{1+2{k^2}}}+{m^2}=\frac{{{m^2}-8{k^2}}}{{1+2{k^2}}}$,
要使$\overrightarrow{OA}⊥\overrightarrow{OB}$,需使x1x2+y1y2=0,即$\frac{{2{m^2}-8}}{{1+2{k^2}}}+\frac{{{m^2}-8{k^2}}}{{1+2{k^2}}}=0$,
所以3m2-8k2-8=0,所以${k^2}=\frac{{3{m^2}-8}}{8}≥0$,
又8k2-m2+4>0,
∴$\left\{{\begin{array}{l}{{m^2}>2}\\{3{m^2}≥8}\end{array}}\right.$,
∴${m^2}≥\frac{8}{3}$,即$m≥\frac{{2\sqrt{6}}}{3}$或$m≤-\frac{{2\sqrt{6}}}{3}$,
∵直線y=kx+m為圓心在原點(diǎn)的圓的一條切線,
∴圓的半徑為$r=\frac{|m|}{{\sqrt{1+{k^2}}}}$,${r^2}=\frac{m^2}{{1+{k^2}}}=\frac{m^2}{{1+\frac{{3{m^2}-8}}{8}}}=\frac{8}{3}$,$r=\frac{{2\sqrt{6}}}{3}$,
所求的圓為${x^2}+{y^2}=\frac{8}{3}$,
此時(shí)圓的切線y=kx+m都滿足$m≥\frac{{2\sqrt{6}}}{3}$或$m≤-\frac{{2\sqrt{6}}}{3}$,…(7分)
而當(dāng)切線的斜率不存在時(shí)切線為$x=±\frac{{2\sqrt{6}}}{3}$,與橢圓$\frac{x^2}{8}+\frac{y^2}{4}=1$的兩個(gè)交點(diǎn)為$(\frac{{2\sqrt{6}}}{3},±\frac{{2\sqrt{6}}}{3})$或$(-\frac{{2\sqrt{6}}}{3},±\frac{{2\sqrt{6}}}{3})$滿足$\overrightarrow{OA}⊥\overrightarrow{OB}$,
綜上,存在圓心在原點(diǎn)的圓${x^2}+{y^2}=\frac{8}{3}$,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且$\overrightarrow{OA}⊥\overrightarrow{OB}$…..(8分)
∵$\left\{{\begin{array}{l}{{x_1}+{x_2}=-\frac{4km}{{1+2{k^2}}}}\\{{x_1}{x_2}=\frac{{2{m^2}-8}}{{1+2{k^2}}}}\end{array}}\right.$,
∴${({x_1}-{x_2})^2}={({x_1}+{x_2})^2}-4{x_1}{x_2}={(-\frac{4km}{{1+2{k^2}}})^2}-4×\frac{{2{m^2}-8}}{{1+2{k^2}}}=\frac{{8(8{k^2}-{m^2}+4)}}{{{{(1+2{k^2})}^2}}}$,$|AB|=\sqrt{{{({x_1}-{x_2})}^2}+{{({{y_1}-{y_2}})}^2}}=\sqrt{(1+{k^2}){{({x_1}-{x_2})}^2}}=\sqrt{(1+{k^2})\frac{{8(8{k^2}-{m^2}+4)}}{{{{(1+2{k^2})}^2}}}}$=$\sqrt{\frac{32}{3}•\frac{{4{k^4}+5{k^2}+1}}{{4{k^4}+4{k^2}+1}}}=\sqrt{\frac{32}{3}[1+\frac{k^2}{{4{k^4}+4{k^2}+1}}]}$,…(10分)
①當(dāng)k≠0時(shí)$|AB|=\sqrt{\frac{32}{3}[1+\frac{1}{{4{k^2}+\frac{1}{k^2}+4}}]}$
∵$4{k^2}+\frac{1}{k^2}+4≥8$,
∴$0<\frac{1}{{4{k^2}+\frac{1}{k^2}+4}}≤\frac{1}{8}$,
∴$\frac{32}{3}<\frac{32}{3}[1+\frac{1}{{4{k^2}+\frac{1}{k^2}+4}}]≤12$,
∴$\frac{4}{3}\sqrt{6}<|AB|≤2\sqrt{3}$,當(dāng)且僅當(dāng)$k=±\frac{{\sqrt{2}}}{2}$時(shí)取”=”…(11分)
②當(dāng)k=0時(shí),$|AB|=\frac{{4\sqrt{6}}}{3}$….(12分)
③當(dāng)AB的斜率不存在時(shí),兩個(gè)交點(diǎn)為$(\frac{{2\sqrt{6}}}{3},±\frac{{2\sqrt{6}}}{3})$或$(-\frac{{2\sqrt{6}}}{3},±\frac{{2\sqrt{6}}}{3})$,
所以此時(shí)$|AB|=\frac{{4\sqrt{6}}}{3}$,…(13分)
綜上,|AB|的取值范圍為$\frac{4}{3}\sqrt{6}≤|AB|≤2\sqrt{3}$,
即:$|AB|∈[\frac{4}{3}\sqrt{6},2\sqrt{3}]$…(14分)
點(diǎn)評(píng) 本題考查橢圓方程的求法,考查滿足條件的圓是否存在的判斷及弦長(zhǎng)的求法,解題時(shí)要認(rèn)真審題,注意根的判別式、韋達(dá)定理、圓的性質(zhì)、橢圓性質(zhì)的合理運(yùn)用,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $4\sqrt{3}$ | B. | $\sqrt{3}$ | C. | 6 | D. | $2\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ($\frac{π}{2}$,$\frac{3π}{2}$) | B. | (π,2π) | C. | (0,$\frac{π}{2}$) | D. | (2π,3π) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0.5 | B. | 1 | C. | 1.5 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com