ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
x | $\frac{π}{3}$ | $\frac{5π}{6}$ | |||
Asin(ωx+φ) | 0 | 5 | -5 | 0 |
分析 (Ⅰ)利用五點(diǎn)法作圖,將表格數(shù)據(jù)補(bǔ)充完整,并求得函數(shù)f(x)=Asin(ωx+φ)的解析式.
(Ⅱ)利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,求得g(x)的解析式,再利用正弦函數(shù)的定義域和值域,求得y=g(x)在區(qū)間[0,$\frac{2π}{3}}$]上的最小值和取得最小值時(shí)x的值.
解答 解 (Ⅰ)根據(jù)表中已知數(shù)據(jù)可得:A=5,$\frac{π}{3}ω+φ=\frac{π}{2}$,$\frac{5π}{6}ω+φ=\frac{3π}{2}$,解得$ω=2,φ=-\frac{π}{6}$.?dāng)?shù)據(jù)補(bǔ)全如下表:
ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
x | $g(x)=5sin[2(x+\frac{π}{6})-\frac{π}{6}]=5sin(2x+\frac{π}{6})$ | y=sinx | (kπ,0) | $2x+\frac{π}{6}=kπ$ | k∈Z |
$x=\frac{kπ}{2}-\frac{π}{12}$ | 0 | 5 | 0 | k∈Z | 0 |
點(diǎn)評(píng) 本題主要考查里用五點(diǎn)法作函數(shù)f(x)=Asin(ωx+φ)在一個(gè)周期上的簡(jiǎn)圖,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的定義域和值域,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {-1,0,1,2} | B. | {0,1,2} | C. | {1,2} | D. | {1,2,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{7}{8}$ | B. | $\frac{3}{8}$ | C. | $\frac{15}{16}$ | D. | $\frac{11}{16}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {1} | B. | {1,2,3,5} | C. | {1,2,4,5} | D. | {1,2,3,4,5} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $(-∞,-2]∪[\frac{3}{2},+∞)$ | B. | $(-∞,-\frac{3}{2}]∪[2,+∞)$ | C. | $(-∞,-\frac{9}{2}]∪[6,+∞)$ | D. | $(-∞,-6]∪[\frac{9}{2},+∞)$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com