求證:sin2α+sin2β-sin2α•sin2β+cos2α•cos2β=1.
考點(diǎn):三角函數(shù)恒等式的證明
專(zhuān)題:三角函數(shù)的求值
分析:直接利用平方關(guān)系式化簡(jiǎn)等式左側(cè),求解即可.
解答: 證明:sin2α+sin2β-sin2α•sin2β+cos2α•cos2β
=sin2α(1-sin2β)+sin2β+cos2α•cos2β
=sin2αcos2β+sin2β+cos2α•cos2β
=(sin2α+cos2α)cos2β+sin2β
=cos2β+sin2β
=1.
所以等式成立.
點(diǎn)評(píng):本題考查三角函數(shù)的恒等式的證明,平方關(guān)系式的應(yīng)用,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為菱形,∠BAD=60°,Q為AD的中點(diǎn),PA=PD=AD=2.
(Ⅰ)若平面PAD⊥平面ABCD,點(diǎn)N是PC的中點(diǎn),求二面角N-BQ-C的余弦值;
(Ⅱ)點(diǎn)M在線段PC上,PM=tPC,試確定t的值,使PA∥平面MQB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x0是函數(shù)f(x)=2x+
1
1-x
的一個(gè)零點(diǎn),若x1∈(1,x0),x2∈(x0,+∞),試判斷f(x1)和f(x2)的符號(hào).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,矩形ABCD中.AD⊥平面ABE,BE=BC,F(xiàn)為CE上的點(diǎn),且BF⊥平面ACE,G為AC與BD的交點(diǎn).
(1)求證:AE⊥平面BCE;
(2)求證:AE∥平面BFD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=3-2cosx,x∈[-
π
4
,
π
4
]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}滿足an+1>an(n∈N*),a1=1,該數(shù)列的前三項(xiàng)分別加上1,1,3后順次成為等比數(shù)列{bn}的前三項(xiàng).
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)令Tn=
a1
b1
+
a2
b2
+…+
an
bn
(n∈N*),證明:Tn+
2n+3
2n
-
1
n
<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(1,2)在圓x2+y2+2x+3y+m=0內(nèi),則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

根據(jù)下列各題的條件,求相應(yīng)等比數(shù)列{an}中的Sn
(1)a1=3,q=2,n=6;
(2)a1=8,q=
1
2
,n=5.
(Ⅰ)求等比數(shù)列1,2,4,…,從第5項(xiàng)到第10項(xiàng)的和;
(Ⅱ)求等比數(shù)列
3
2
3
4
,
3
8
,…從第3項(xiàng)到第7項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax-2-lnx(a∈R).
(1)若f(x)在點(diǎn)(e,f(e))處的切線為ex-y+2=0,求a的值;
(2)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案