已知等差數(shù)列{an}滿足an+1>an(n∈N*),a1=1,該數(shù)列的前三項(xiàng)分別加上1,1,3后順次成為等比數(shù)列{bn}的前三項(xiàng).
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)令Tn=
a1
b1
+
a2
b2
+…+
an
bn
(n∈N*),證明:Tn+
2n+3
2n
-
1
n
<3.
考點(diǎn):數(shù)列與不等式的綜合,數(shù)列的求和,等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:(1)設(shè)d、q分別為數(shù)列{an}、數(shù)列{bn}的公差與公比,a1=1.由題可知,a1=1,a2=1+d,a3=1+2d,分別加上1,1,3后得2,2,+d,4+2d是等比數(shù)列{bn}的前三項(xiàng),從而可得(2+d)2=2(4+2d),根據(jù)an+1>an,可確定公差的值,從而可求數(shù)列{an}的通項(xiàng),進(jìn)而可得公比q,故可求{bn}的通項(xiàng)公式
(2)表示出Tn=
a1
b1
+
a2
b2
+…+
an
bn
,利用錯(cuò)位相減法求和,然后證明Tn+
2n+3
2n
-
1
n
<3.
解答: 解:(1)設(shè)d、q分別為數(shù)列{an}、數(shù)列{bn}的公差與公比,a1=1.
由題可知,a1=1,a2=1+d,a3=1+2d,分別加上1,1,3后得2,2,+d,4+2d是等比數(shù)列{bn}的前三項(xiàng),
∴(2+d)2=2(4+2d)⇒d=±2.
∵an+1>an,
∴d>0.
∴d=2,
∴an=2n-1(n∈N*).
由此可得b1=2,b2=4,q=2,
∴bn=2n(n∈N*).
(2)證明:Tn=
a1
b1
+
a2
b2
+…+
an
bn
=
1
2
+
3
22
+
5
23
+…+
2n-1
2n
,①
1
2
Tn=
1
22
+
3
23
+
5
24
+…+
2n-1
2n+1
.②
①-②,得
1
2
Tn=
1
2
+2(
1
22
+
1
23
+…++…+
1
2n
)-
2n-1
2n+1
,
∴Tn=3-
2n+3
2n

∴Tn+
2n+3
2n
-
1
n
=3-
1
n
<3,
不等式成立.
點(diǎn)評:本題以等差數(shù)列與等比數(shù)列為載體,考查數(shù)列通項(xiàng)公式的求解,考查數(shù)列與不等式的綜合,考查錯(cuò)位相減法求數(shù)列的和,綜合性強(qiáng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3-3x2+1,若f(x)存在唯一的零點(diǎn)x0,且x0<0,則a的取值范圍是( 。
A、(2,+∞)
B、(1,+∞)
C、(-∞,-2)
D、(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足an+1=
1
16
(1+4an+
1+24an
),a1=1,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(t)=log2t,t∈[
2
,8]對f(t)值域內(nèi)所有實(shí)數(shù)m都成立,不等式x2+(m-4)x+4-2m>0恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證:sin2α+sin2β-sin2α•sin2β+cos2α•cos2β=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算下列定積分
π
2
0
sin2
x
2
dx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
2sin(
x
2
-
π
4
)
3

(1)求函數(shù)振幅、周期和頻率;
(2)求函數(shù)的單調(diào)增區(qū)間和對稱軸.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
9x
1+ax2
(a>0).
(1)當(dāng)
1
4
<a<4時(shí),求f(x)在[
1
2
,2]上的最大值;
(2)若直線y=-x+2a為曲線y=f(x)的切線,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,△ABC內(nèi)接于⊙O,點(diǎn)D在OC的延長線上,AD與⊙O相切,割線DM與⊙O相交于點(diǎn)M,N,若∠B=30°,AC=1,則DM×DN=
 

查看答案和解析>>

同步練習(xí)冊答案