5.閱讀下面的一段文字,并解決后面的問題:
我們可以從函數(shù)的角度來研究方程的解的個(gè)數(shù)的情況,例如,研究方程2x3-3x2-6=0的解的情況:因?yàn)榉匠?x3-3x2-6=0的同解方程有x3=$\frac{3}{2}{x^2}$+3,2x-3=$\frac{6}{x^2}$等多種形式,所以,我們既可以選用函數(shù)y=x3,y=$\frac{3}{2}{x^2}$+3,也可以選用函數(shù)y=2x-3,y=$\frac{6}{x^2}$,通過研究?jī)珊瘮?shù)圖象的位置關(guān)系來研究方程的解的個(gè)數(shù)情況.因?yàn)楹瘮?shù)的選擇,往往決定了后續(xù)研究過程的難易程度,所以從函數(shù)的角度來研究方程的解的情況,首先要注意函數(shù)的選擇.
請(qǐng)選擇合適的函數(shù)來研究該方程$\frac{1}{x}$=$\frac{ax+b}{e^x}$的解的個(gè)數(shù)的情況,記k為該方程的解的個(gè)數(shù).請(qǐng)寫出k的所有可能取值,并對(duì)k的每一個(gè)取值,分別指出你所選用的函數(shù),畫出相應(yīng)圖象(不需求出a,b的數(shù)值).

分析 方程$\frac{1}{x}$=$\frac{ax+b}{e^x}$等價(jià)于ex=ax2+bx或$\frac{{e}^{x}}{x}$=ax+b,從而構(gòu)造函數(shù),作圖象研究即可.

解答 解:k的可能取值為0,1,2,3;
當(dāng)k=0時(shí),選用函數(shù)y=ex與y=ax2+bx研究,其圖象如下,
;
當(dāng)k=1時(shí),選用函數(shù)y=ex與y=ax2+bx研究,其圖象如下,
;
當(dāng)k=2時(shí),選用函數(shù)y=ex與y=ax2+bx研究,其圖象如下,
;
當(dāng)k=3時(shí),選用函數(shù)y=$\frac{{e}^{x}}{x}$與y=ax+b研究,其圖象如下,

點(diǎn)評(píng) 本題考查了方程的根與函數(shù)的零點(diǎn)的關(guān)系應(yīng)用及數(shù)形結(jié)合的思想應(yīng)用,同時(shí)考查了分類討論的思想應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知不等式x2-kx+k-1>0.
(1)若k=2,求不等式x2-kx+k-1>0的解集;
(2)若不等式x2-kx+k-1>0對(duì)x∈(1,2)恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在數(shù)列{an}中,a1=$\frac{1}{3}$,$\frac{1}{{a}_{n+1}}$=$\frac{3}{{a}_{n}({a}_{n}+3)}$,n∈N+,且bn=$\frac{1}{3+{a}_{n}}$,記Pn=b1•b2•b3…bn,Sn=b1+b2+b3+…+bn,則3n+1Pn+Sn=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.同時(shí)擲兩個(gè)均勻的正方體骰子,則向上的點(diǎn)數(shù)之和為5的概率為( 。
A.$\frac{1}{9}$B.$\frac{1}{18}$C.$\frac{2}{21}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知數(shù)列{an}中,a1=2,a2=3,其前n項(xiàng)和Sn滿足Sn+1+Sn-1=2Sn+1,其中n≥2,n∈N*
(Ⅰ)求證:數(shù)列{an}為等差數(shù)列,并求其通項(xiàng)公式;
(Ⅱ)設(shè)bn=an•2-n,Tn為數(shù)列{bn}的前n項(xiàng)和.
①求Tn的表達(dá)式;
②求使Tn>2的n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在公比為2的等比數(shù)列{an}中,a2與a5的等差中項(xiàng)是9$\sqrt{3}$.
(1)求a1的值;
(2)若函數(shù)y=a1sin($\frac{π}{4}x+$φ),0<φ<π的一部分圖象如圖所示,M(-1,a1),N(3,-a1)為圖象上的兩點(diǎn),設(shè)∠MON=θ,其中O為坐標(biāo)原點(diǎn),0<θ<π,求cos(θ-φ)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知各項(xiàng)均為正數(shù)的數(shù)列{an},{bn}滿足a1=b1=1,b${\;}_{n+1}^{2}$=bnbn+2,且9b${\;}_{3}^{2}$=b2b6,若$\frac{_{n+1}}{{a}_{n+1}}$=$\frac{_{n}}{{a}_{n}+2_{n}}$,則( 。
A.數(shù)列{$\frac{{a}_{n}}{_{n}}$}是等比數(shù)列,且an=$\frac{2n-1}{{3}^{n}}$
B.數(shù)列{$\frac{{a}_{n}}{_{n}}$}是等差數(shù)列,且an=$\frac{2n-1}{{3}^{n}}$
C.數(shù)列{$\frac{{a}_{n}}{_{n}}$}是等比數(shù)列,且an=(2n-1)•3n-1
D.數(shù)列{$\frac{{a}_{n}}{_{n}}$}是等差數(shù)列,且an=(2n-1)•3n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)a≠0,n是大于1的自然數(shù),${({1+\frac{x}{a}})^n}$的展開式為a0+a1x+a2x2+…+anxn.若a1=3,a2=4,則a=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時(shí),f(x)=($\frac{1}{2}$)x-1.則不等式f(x)-x2≥0的解集是( 。
A.[0,1]B.[-1,1]C.[1,+∞)D.(-∞,-1]∪[1,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案