【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系.已知點(diǎn)的極坐標(biāo)為,曲線的參數(shù)方程為 (為參數(shù))

(1)求點(diǎn)的直角坐標(biāo);化曲線的參數(shù)方程為普通方程;

(2)設(shè)為曲線上一動(dòng)點(diǎn),以為對(duì)角線的矩形的一邊垂直于極軸,求矩形周長(zhǎng)的最小值,及此時(shí)點(diǎn)的直角坐標(biāo).

【答案】(1)(2)最小周長(zhǎng)為4,點(diǎn)

【解析】試題分析:(1)利用 得點(diǎn)的直角坐標(biāo);利用平方關(guān)系 消參數(shù)將曲線的參數(shù)方程化為普通方程;(2)利用橢圓參數(shù)方程表示點(diǎn)坐標(biāo),并表示矩形周長(zhǎng): .最后根據(jù)正弦函數(shù)性質(zhì)確定最值.

試題解析:(1)點(diǎn)的極坐標(biāo)轉(zhuǎn)化成直角坐標(biāo)為:

消參數(shù)得

(2)設(shè)根據(jù)題意,得到

則: , ,

所以矩形的周長(zhǎng)為:

知當(dāng)時(shí),

所以矩形的最小周長(zhǎng)為4,點(diǎn)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形中, , , 分別在上, ,現(xiàn)將四邊形沿折起,使.

(1)若,在折疊后的線段上是否存在一點(diǎn),使得平面?若存在,求出的值;若不存在,說(shuō)明理由;

(2)求三棱錐的體積的最大值,并求出此時(shí)點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知E、F分別在正方體ABCD﹣A1B1C1D1的棱BB1、CC1上,且B1E=2EB,CF=2FC1 , 則面AEF與面ABC所成的二面角的正切值等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體中,底面是邊長(zhǎng)為的菱形, ,四邊形是矩形,平面平面, 的中點(diǎn).

(1)求證: 平面;

(2)求直線與平面所成角的正弦值;

(3)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)應(yīng)的邊分別為a,b,c,且(2a﹣c)cosB=bcosC. (Ⅰ)求角B的大小;
(Ⅱ)若 ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知{an}為等差數(shù)列,a1+a3+a5=105,a2+a4+a6=99,以Sn表示{an}的前n項(xiàng)和,則使得Sn達(dá)到最大值的n是(
A.21
B.20
C.19
D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面平面四邊形為直角梯形, 四邊形為等腰梯形,

(Ⅰ)若梯形內(nèi)有一點(diǎn),使得平面,求點(diǎn)的軌跡;

(Ⅱ)求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)直線與圓交于M、N兩點(diǎn),且MN關(guān)于直線對(duì)稱.

(1)求m,k的值;

(2)若直線與圓CP,Q兩點(diǎn),是否存在實(shí)數(shù)a使得OPOQ,如果存在,求出a的值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)點(diǎn)為橢圓的左焦點(diǎn),直線被橢圓截得弦長(zhǎng)為

(1)求橢圓的方程;

(2)圓與橢圓交于兩點(diǎn), 為線段上任意一點(diǎn),直線交橢圓兩點(diǎn)為圓的直徑,且直線的斜率大于,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案