19.設(shè)數(shù)列{an}的前n項和為Sn,已知a1=2,Sn+1=an+1an+Sn+1,則S60=30.

分析 由Sn+1=an+1an+Sn+1,可得:an+1=an+1an+1,可得:an+3=an,即可得出.

解答 解:由Sn+1=an+1an+Sn+1,可得:an+1=an+1an+1,
∴a2=2a2+1,解得a2=-1.
同理可得:a3=$\frac{1}{2}$,a4=2,…,
∴an+3=an
∴S60=30(a1+a2+a3
=20×$(2-1+\frac{1}{2})$
=30.
故答案為:30.

點評 本題考查了遞推關(guān)系、數(shù)列的周期性,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.判斷方程$\frac{x}{4}$-cosx=0的根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知點A(1,2)示拋物線y2=4x上一點,過點A作兩條直線AD,AE分別交拋物線于點D,E,若AD,AE的斜率分別為kAD,KAE,且kAD+kAE=0,則直線DE的斜率為( 。
A.1B.-$\frac{1}{2}$C.-1D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知拋物線C:y2=4x,直線l:$y=\frac{1}{2}x+b$與C交于A、B兩點,O為坐標(biāo)原點.
(1)當(dāng)直線l過拋物線C的焦點F時,求|AB|;
(2)是否存在直線l使得直線OA⊥OB?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)A1,A2分別為雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左右頂點,若雙曲線上存在點M使得兩直線斜率${k_{M{A_1}}}{k_{M{A_2}}}<2$,則雙曲線C的離心率的取值范圍為( 。
A.$(0,\sqrt{3})$B.$(1,\sqrt{3})$C.$(\sqrt{3},+∞)$D.(0,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.等比數(shù)列{an}中,已知a1=2,a4=16.
(1)求數(shù)列{an}的通項公式;
(2)若a1,a2分別為等差數(shù)列{bn}的第1項和第2項,數(shù)列{bn}的前n項和為Sn,求證:$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+$\frac{1}{{S}_{3}}$+…+$\frac{1}{{S}_{n}}$<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.直線y=kx+1與圓C:x2+y2=1交于P、Q兩點,以O(shè)P、OQ為鄰邊作平行四邊形OPMQ,且點M恰在圓C上,則k=±$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知圓C:(x-$\sqrt{3}$)2+(y-1)2=1和兩點A(-t,0),B(t,0)(t>0),若圓C上存在點P,使得∠APB=90°,則t的最小值為( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.定積分$\int_{-1}^1{x^2}$dx的值為$\frac{2}{3}$.

查看答案和解析>>

同步練習(xí)冊答案