14.設(shè)A1,A2分別為雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左右頂點(diǎn),若雙曲線上存在點(diǎn)M使得兩直線斜率${k_{M{A_1}}}{k_{M{A_2}}}<2$,則雙曲線C的離心率的取值范圍為( 。
A.$(0,\sqrt{3})$B.$(1,\sqrt{3})$C.$(\sqrt{3},+∞)$D.(0,3)

分析 由題意可得A1(-a,0),A2(a,0),設(shè)M(m,n),代入雙曲線的方程,運(yùn)用直線的斜率公式,化簡(jiǎn)整理可得b2<2a2,由a,b,c的關(guān)系和離心率公式,計(jì)算即可得到所求范圍.

解答 解:由題意可得A1(-a,0),A2(a,0),
設(shè)M(m,n),可得$\frac{{m}^{2}}{{a}^{2}}$-$\frac{{n}^{2}}{^{2}}$=1,
即有$\frac{{n}^{2}}{{m}^{2}-{a}^{2}}$=$\frac{^{2}}{{a}^{2}}$,
由題意${k_{M{A_1}}}{k_{M{A_2}}}<2$,
即為$\frac{n-0}{m+a}$•$\frac{n-0}{m-a}$<2,
即有$\frac{^{2}}{{a}^{2}}$<2,即b2<2a2
c2-a2<2a2,即c2<3a2,
c<$\sqrt{3}$a,即有e=$\frac{c}{a}$<$\sqrt{3}$,
由e>1,可得1<e<$\sqrt{3}$.
故選:B.

點(diǎn)評(píng) 本題考查雙曲線的離心率的范圍,注意運(yùn)用點(diǎn)滿足雙曲線方程和直線的斜率公式,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知數(shù)列{an}的前n項(xiàng)和Sn=2n2+3n.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)25是否是該數(shù)列中的項(xiàng),若是,是第幾項(xiàng)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.過(guò)拋物線y2=2px(p>0)的焦點(diǎn)F作傾斜角為45°的直線交拋物線于A、B兩點(diǎn),若線段AB的長(zhǎng)為8,求拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,在底面為梯形的四棱錐P-ABCD中,平面PAB⊥平面ABCD,AD∥BC,AD⊥CD,AD=CD=2,BC=4.
(Ⅰ)求證:AC⊥PB;
(Ⅱ)若PA=PB,且三棱錐D-PAC的體積為$\frac{2}{3}$,求AP的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.關(guān)于函數(shù)f(x)=sin4x-cos4x(x∈R)有下列命題:
①y=f(x)的周期為$\frac{π}{2}$;
②$x=\frac{π}{8}$是y=f(x)的一條對(duì)稱軸;
③y=f(x)在[0,$\frac{π}{2}$]上是增函數(shù),其中正確的命題序號(hào)是③
(把你認(rèn)為正確命題的序號(hào)都寫上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=2,Sn+1=an+1an+Sn+1,則S60=30.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知直線y=$\frac{3}{4}$x+b分圓x2+y2=4成的圓弧長(zhǎng)之比為1:2,則實(shí)數(shù)b=±$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.當(dāng)雙曲線C不是等軸雙曲線我們把以雙曲線C的實(shí)軸、虛軸的端點(diǎn)作為頂點(diǎn)的橢圓稱為雙曲線C的“伴生橢圓”,則離心率為$\sqrt{5}$的雙曲線的“伴生橢圓”離心率為( 。
A.$\frac{\sqrt{5}}{5}$B.$\frac{1}{2}$C.$\frac{2\sqrt{3}}{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.為貫徹落實(shí)教育部6部門《關(guān)于加快發(fā)展青少年校園足球的實(shí)施意見(jiàn)》,全面提高我市中學(xué)生的體質(zhì)健康水平,培養(yǎng)拼搏意識(shí)和團(tuán)隊(duì)精神,普及足球知識(shí)和技能,市教體局決定舉行春季校園足球聯(lián)賽.為迎接此次聯(lián)賽,甲中學(xué)選拔了20名學(xué)生組成集訓(xùn)隊(duì),現(xiàn)統(tǒng)計(jì)了這20名學(xué)生的身高,記錄入如表:(設(shè)ξ為隨機(jī)變量)
身高(cm)168174175176178182185188
人數(shù)12435131
(1)請(qǐng)計(jì)算這20名學(xué)生的身高的中位數(shù)、眾數(shù),并補(bǔ)充完成下面的莖葉圖;
(2)身高為185cm和188cm的四名學(xué)生分別記為A,B,C,D,現(xiàn)從這四名學(xué)生選2名擔(dān)任正副門將,請(qǐng)利用列舉法列出所有可能情況,并求學(xué)生A入選門將的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案