10.設(shè)(x,y)在映射f下的像是(2x+y,x-2y),則在f下,像(3,4)的原像是( 。
A.(10,-5)B.(2,-1)C.(1,0)D.(3,2)

分析 由題意可得:$\left\{\begin{array}{l}{2x+y=3}\\{x-2y=4}\end{array}\right.$,解得x、y的值,即可求得原像(x,y).

解答 解:由題意得:$\left\{\begin{array}{l}{2x+y=3}\\{x-2y=4}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$,
故選:B.

點(diǎn)評(píng) 本題主要考查映射的定義,在映射f下,像和原像的定義,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.隨著我國經(jīng)濟(jì)的發(fā)展,居民的儲(chǔ)蓄存款逐年增長,設(shè)某地區(qū)城鄉(xiāng)居民人民幣儲(chǔ)蓄存款(年底余額)如表.
年份20102011201220132014
時(shí)間代號(hào)t12345
儲(chǔ)蓄存款y(千元)567810
(1)求y關(guān)于t的回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$t-$\stackrel{∧}{a}$;
(2)用所求回歸方程預(yù)測(cè)該地區(qū)2015年(t=6)的人民幣儲(chǔ)蓄存款.(回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$t-$\stackrel{∧}{a}$  中,$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$t)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合A={x|x<-1或x>5},B={x|a≤x<a+4},且B?A,則實(shí)數(shù)a的取值范圍為( 。
A.(-∞,-5)∪(5,+∞)B.(-∞,-5)∪[5,+∞)C.(-∞,-5]∪[5,+∞)D.(-∞,-5]∪(5,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)f(x)=$\frac{x+3}{{{x^2}+6x+13}}$在區(qū)間[-2,2]上的最大值是$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}0,x>0\\-π,x=0\\{π^2}+1,x<0\end{array}$則f(f(f(-1)))的值等于( 。
A.π2-1B.π2+1C.D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若實(shí)數(shù)x,y滿足$\left\{{\begin{array}{l}{x-y≥0}\\{x+y-2≤0}\\{y≥-2}\end{array}}\right.$,則z=3x+y的最大值是10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.構(gòu)造一個(gè)同時(shí)滿足下面三個(gè)條件的函數(shù)實(shí)例:y=-|x|(寫解析式).
①函數(shù)在(-∞,0)上單調(diào)遞增;  
②函數(shù)具有奇偶性;  
③函數(shù)有最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.方程mx2+2x+1=0至少有一個(gè)負(fù)根,則( 。
A.0<m<1或m<0B.0<m<1C.m<1D.m≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知雙曲線一條漸近線的斜率為$\sqrt{3}$,焦點(diǎn)是(-4,0)、(4,0),則雙曲線方程為( 。
A.$\frac{x^2}{12}-\frac{y^2}{4}=1$B.$\frac{x^2}{4}-\frac{y^2}{12}=1$C.$\frac{x^2}{10}-\frac{y^2}{6}=1$D.$\frac{x^2}{6}-\frac{y^2}{10}=1$1

查看答案和解析>>

同步練習(xí)冊(cè)答案