分析 先根據(jù)題意可知AB=BP,BC=CP進而根據(jù)余弦定理可求得cos2θ的值進而求得θ,最后在直角三角形PCD中求得答案
解答 解:如圖所示,△BED,△BDC為等腰三角形,BD=ED=600,BC=DC=200$\sqrt{3}$.
在△BCD中,由余弦定理可得cos2θ=$\frac{60{0}^{2}+(200\sqrt{3})^{2}-(200\sqrt{3})^{2}}{2×600×200\sqrt{3}}$=$\frac{\sqrt{3}}{2}$,
所以2θ=30°,4θ=60°.
在Rt△ABC中,AB=BC•sin 4θ=200$\sqrt{3}$×$\frac{\sqrt{3}}{2}$=300(cm).
點評 本題考查利用數(shù)學(xué)知識解決實際問題,考查余弦定理的運用,考查學(xué)生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
組號 | 分組 | 頻數(shù) | 頻率 |
第1組 | [160,165) | 5 | 0.05 |
第2組 | [165,170) | ① | 0.35 |
第3組 | [170,175) | 30 | ② |
第4組 | [175,180) | 20 | 0.20 |
第5組 | [180,185] | 10 | 0.10 |
合計 | 100 | 1.00 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|0<x≤3} | B. | {x|1≤x≤3} | C. | {x|0≤x≤3} | D. | {x|1<x≤3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{1}{2}$ | C. | 2 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com