已知a,b,c均為正實數(shù),且滿足abc=1,證明:
(1)a+b+c≥
1
a
+
1
b
+
1
c

(2)a2+b2+c2
a
+
b
+
c
考點:不等式的證明
專題:證明題,不等式的解法及應(yīng)用,推理和證明
分析:利用均值不等式,結(jié)合abc=1,即可證明結(jié)論.
解答: 證明:∵a,b,c∈R+
∴a+b≥2
ab
,b+c≥2
bc
,a+c≥2
ac

∴2a+2b+2c≥2
ab
+2
bc
+2
ac

∴a+b+c≥
ab
+
bc
+
ac

∵abc=1,
∴a+b+c≥
1
a
+
1
b
+
1
c
;
(2)∵a2+b2≥2ab,b2+c2≥2bc,a2+c2≥2ac,
∴2a2+2b2+2c2≥2ab+2bc+2ac,
∴a2+b2+c2≥ab+bc+ac,
∵ab+bc+ac=
1
c
+
1
a
+
1
b
1
bc
+
1
ac
+
1
ab
=
a
+
b
+
c
,
∴a2+b2+c2
a
+
b
+
c
點評:此題主要考查均值不等式的應(yīng)用,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)
1-i
2-i
的共軛復(fù)數(shù)對應(yīng)的點位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)的定義域為{x|x∈R,且x≠2},且y=f(x+2)是偶函數(shù),當(dāng)x<2時,f(x)=|2x-1|,那么當(dāng)x>2時,函數(shù)f(x)的遞減區(qū)間是( 。
A、(3,5)
B、(3,+∞)
C、(2,+∞)
D、(2,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項公式為an=
-6n+5(n為奇數(shù))
2n(n為偶數(shù))
,求這個數(shù)列的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C1的極坐標(biāo)方程為ρcos(θ-
π
4
)=-
2
2
,以極點為原點,極軸為x軸的非負(fù)半軸建立平面直角坐標(biāo)系,曲線C2的參數(shù)方程為
x=cosα
y=sin2α
,求曲線C1與曲線C2交點的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
lnx
x
+2,求f(x)的單調(diào)區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC為銳角三角形,且滿足tanA=t+1,tanB=t-1,則實數(shù)t的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為
x=2-
2
t
y=-1+
2
t
(t為參數(shù));以原點O為極點,以x軸正半軸為極值,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=
2
1+3sin2θ

(1)求曲線C1的普通方程與曲線C2的直角坐標(biāo)方程;
(2)試判斷曲線C1與C2是否存在兩個交點,若存在,求出兩交點間的距離;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平行四邊形ABCD中,已知AB=12cm,BC=10cm,A=60°,求平行四邊形兩條對角線的長.

查看答案和解析>>

同步練習(xí)冊答案