7.若一個圓錐側(cè)面展開圖是面積為2π的半圓面,則該圓錐底面的面積為( 。
A.πB.C.D.

分析 通過側(cè)面展開圖的面積.求出圓錐的母線,底面的半徑,求出圓錐底面的面積.

解答 解:由題意一個圓錐的側(cè)面展開圖是面積為2π的半圓面,
因為4π=πl(wèi)2,所以l=2,
半圓的弧長為2π,
圓錐的底面半徑為2πr=2π,r=1,
所以圓錐底面的面積為π,
故選:A.

點評 本題考查旋轉(zhuǎn)體的條件的求法,側(cè)面展開圖的應用,考查空間想象能力,計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

17.函數(shù)f(x)=2sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分圖象如圖所示,則f($\frac{π}{4}$)=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知橢圓C的中心在原點,焦點在x軸上,離心率為$\frac{\sqrt{3}}{2}$,它的一個頂點恰好是拋物線x2=4$\sqrt{2}y$的焦點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)直線x=2與橢圓交于P,Q兩點,P點位于第一象限,A,B是橢圓上位于直線x=2兩側(cè)的動點,滿足直線PA與直線PB的傾斜角互補,證明直線AB的斜率為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知兩條直線a,b,兩個平面α,β,下面四個命題中不正確的是( 。
A.a⊥α,α∥β,b?β⇒a⊥bB.α∥β,a∥b,a⊥α⇒b⊥βC.a∥b,b⊥β⇒a⊥βD.a∥b,a∥α⇒b∥α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.若函數(shù)$f(x)=\left\{\begin{array}{l}{(\frac{1}{2})^{x-3}},x≤2\\{log_a}x,x>2\end{array}\right.$(a>0,且a≠1)的值域是[2,+∞),則實數(shù)a的取值范圍是(1,$\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.設等差數(shù)列{an}滿足${a_1}=1,{a_n}>0({n∈{N^*}})$,其前n項和為Sn,若數(shù)列$\left\{{\sqrt{S_n}}\right\}$也為等差數(shù)列,則$\frac{{{S_{n+10}}}}{{{a_n}^2}}$的最大值為121.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知數(shù)列{an}滿足${a_1}=3,{a_{n+1}}={a_n}+2(n∈{N^*})$,其前n項和為Sn,則$\frac{{4{S_n}+39}}{{4{a_n}}}$的最小值為( 。
A.$\frac{7}{2}$B.$\frac{99}{28}$C.$\frac{71}{20}$D.$\frac{51}{12}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.點M的極坐標是($3,\frac{π}{6}$),則點M的直角坐標為( 。
A.($\frac{{3\sqrt{3}}}{2}$,$\frac{3}{2}$)B.($\frac{{\sqrt{3}}}{2}$,$\frac{3}{2}$)C.($\frac{3}{2}$,$\frac{{3\sqrt{3}}}{2}$)D.以上都不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.若函數(shù)f(x)=cos2x-cos(2x+$\frac{π}{3}$)的圖形向左平移φ(φ>0)個單位后關于y軸對稱,則φ的最小值為(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{2π}{3}$

查看答案和解析>>

同步練習冊答案