函數(shù)y=2sin(x+
π
3
),x∈[0,π]的單調(diào)遞減區(qū)間是
 
考點:復合三角函數(shù)的單調(diào)性
專題:三角函數(shù)的圖像與性質(zhì)
分析:由x+
π
3
在正弦函數(shù)的減區(qū)間內(nèi)求出復合函數(shù)y=2sin(x+
π
3
)的減區(qū)間,取k=0得到x∈[0,π]的單調(diào)遞減區(qū)間.
解答: 解:由
π
2
+2kπ≤x+
π
3
2
+2kπ

解得:
π
6
+2kπ≤x≤
6
+2kπ,k∈Z

取k=0,得x∈[0,π]的單調(diào)遞減區(qū)間是[
π
6
,π]

故答案為:[
π
6
,π]
點評:本題考查了復合三角函數(shù)的單調(diào)性,考查了正弦函數(shù)的減區(qū)間,是基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷售經(jīng)驗得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計規(guī)律:每生產(chǎn)產(chǎn)品x(千臺),其總成本為G(x)(萬元),其中固定成本為3.2萬元,并且每生產(chǎn)1千臺的生產(chǎn)成本為4萬元(總成本=固定成本+生產(chǎn)成本).銷售收入R(x)(萬元)滿足R(x)=
-0.5x2+8x-1.2,0≤x≤5
3x+11.4            , x>5 
,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計規(guī)律,請完成下列問題:
(Ⅰ)寫出利潤函數(shù)y=f(x)的解析式(利潤=銷售收入-總成本);
(Ⅱ)工廠生產(chǎn)多少千臺產(chǎn)品時,可使盈利最多?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知冪函數(shù)f(x)=(m2+m-5)xm為定義域是R的偶函數(shù),則實數(shù)m=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,C,D是兩個校區(qū)的所在地,C,D到一條公路AB的垂直距離分別是CA=2km,DB=4km,AB兩端之間的距離是6km.某移動公司將在AB之間找到一點M,在M處建造一個信號塔,使得M對C,D的張角與M對C,A的張角相等(即∠CMD=∠CMA),那么點M到點A的距離是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(x+a)(x-b)(其中a>b>0)的圖象如右圖所示,則函數(shù)g(x)=ax-b的圖象大致為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若sin
θ
2
=-
3
5
,cos
θ
2
=-
4
5
,則角θ的終邊所在象限是( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

當x<1,y=
x2-x+1
x-1
的最大值為
 
此時x的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)y=2sin2x-3cosx最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,已知a1=2,an+1=an+n,則a20=
 

查看答案和解析>>

同步練習冊答案