求值:(0.0081)-
1
4
-[(-9)2×(
7
8
)
0
]
1
2
×[
5
3
×81-0.25+(3
3
8
)
-
2
3
]
-
1
2
-27-
1
3
=
 
考點(diǎn):有理數(shù)指數(shù)冪的化簡(jiǎn)求值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:直接利用分?jǐn)?shù)指數(shù)冪的運(yùn)算法則求解即可.
解答: 解:(0.0081)-
1
4
-[(-9)2×(
7
8
)
0
]
1
2
×[
5
3
×81-0.25+(3
3
8
)
-
2
3
]
-
1
2
-27-
1
3

=[(0.3)4]-
1
4
-[(-9)2]
1
2
×[
5
3
×(34)-0.25+[(
3
2
)3]
-
2
3
]
-
1
2
-(33)-
1
3

=
10
3
-9×[
5
9
+
4
9
]-
1
2
-
1
3

=3-9
=-6.
故答案為:-6.
點(diǎn)評(píng):本題考查分?jǐn)?shù)指數(shù)冪的運(yùn)算法則的應(yīng)用,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在三角形ABC中,角A,B,C所對(duì)應(yīng)的邊分別為a,b,c,已知a=2,b=4,cosB=
3
5
,則sinA=( 。
A、
1
5
B、
2
5
C、
3
5
D、
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,拋物線C:y2=4ax(a>0)的焦點(diǎn)為F,M是拋物線C上一點(diǎn),若△OFM的外接圓與拋物線C的準(zhǔn)線相切,且該圓面積為9π,則a=( 。
A、2B、4C、6D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f(x)=-x2+13在區(qū)間[a,b]上的最小值為4a,最大值為4b,求[a,b].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a•5x+(a-2)•5-x
5x+5-x
,其中a為實(shí)常數(shù).
(1)若該函數(shù)為奇函數(shù),求實(shí)數(shù)a的值.
(2)當(dāng)a=-1時(shí),求該函數(shù)的值域并討論該函數(shù)的單調(diào)性,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an},Sn為其前n項(xiàng)和,且滿足Sn=3(1-an),數(shù)列{bn}滿足:b1=
32
7
,bn=4n-1-3bn-1(n≥2).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)證明數(shù)列{bn}不是等比數(shù)列;
(3)設(shè)cn=
bn
4n
-
1
7
,dn=3cn2-4an,求數(shù)列{dn}的最小項(xiàng)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=cos(2x+
3
)+2cos2x
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)當(dāng)x∈(-
π
2
,0]時(shí),求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:
(1)0.027 
1
3
-(-
1
7
-2+256 
3
4
-3-1+(
2
-1)0;
(2)lg5•lg8000+(lg2 
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)F(-
1
2
,0)
,直線n:x=
1
2
,動(dòng)點(diǎn)P到點(diǎn)F的距離等于它到直線l的距離.
(Ⅰ)試判斷動(dòng)點(diǎn)P的軌跡C的形狀,并求出其標(biāo)準(zhǔn)方程;
(Ⅱ)若過(guò)A(0,2)的直線n與軌跡C有且只有一個(gè)公共點(diǎn),求直線n的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案