12.已知集合A={-2,-1,0,1,2},B={x|-2<x<2},則A∩B=( 。
A.{-2,-1,0,1,2}B.{-2,-1,0,1}C.{-1,0,1,2}D.{-1,0,1}

分析 由A與B,找出兩集合的交集即可.

解答 解:集合A={-2,-1,0,1,2},B={x|-2<x<2},則A∩B={-1,0,1,2},
故選:C

點評 此題考查了交集及其運算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

2.在等差數(shù)列{an}中,已知a5=12,a12=5,求a1,d,an

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.實數(shù)x、y滿足條件$\left\{\begin{array}{l}{x-y+5≥0}\\{x+y≥0}\\{x≤3}\end{array}\right.$,則,z=-2x+y的最小值為-9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.設(shè)函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,其中向量$\overrightarrow{m}$=(2,2cosx),$\overrightarrow{n}$=($\sqrt{3}$sin2x,2cosx),x∈R.
(1)求f(x)的最大值與最小正周期;
(2)已知g(x)的圖象與f(x)的圖象關(guān)于直線x=$\frac{π}{4}$對稱,求g(x)在[0,$\frac{π}{2}$]上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若直線y=x-b與曲線$\left\{\begin{array}{l}{x=2+cosθ}\\{y=sinθ}\end{array}\right.$,(θ∈[0,π])有兩個不同的公共點,則實數(shù)b的取值范圍為(  )
A.(2-$\sqrt{2}$,1]B.(2-$\sqrt{2}$,2+$\sqrt{2}$]C.(-∞,2-$\sqrt{2}$)∪(2+$\sqrt{2}$,+∞)D.[-1,$\sqrt{2}$-2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=2sin(2x+$\frac{π}{6}$)+2,x∈R.求:
( I) 求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
( II) 求函數(shù)f(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{3}$]上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.把函數(shù)y=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的圖象向左平移$\frac{π}{3}$個單位得到y(tǒng)=f(x)的圖象(如圖),則2A-ω+φ=( 。
A.$-\frac{π}{3}$B.$\frac{π}{3}$C.$-\frac{π}{6}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知A?{1,2,3},且A中至多有一個奇數(shù),則這樣的集合A共有( 。﹤.
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.在生產(chǎn)過程中,測得纖維產(chǎn)品的纖度(表示纖維粗細的一種量)共有100個數(shù)據(jù),將數(shù)據(jù)分組及其頻數(shù):
分組頻數(shù)
[1.30,1.34)4
[1.34,1.38)25
[1.38,1.42)30
[1.42,1.46)29
[1.46,1.50)10
[1.50,1.54)2
合計100
(1)列出頻率分布表;
(2)畫出頻率分布直方圖;
(3)從頻率分布直方圖估計出纖度的眾數(shù)、中位數(shù)和平均數(shù).

查看答案和解析>>

同步練習冊答案