17.已知函數(shù)f(x)=2sin(2x+$\frac{π}{6}$)+2,x∈R.求:
( I) 求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
( II) 求函數(shù)f(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{3}$]上的值域.

分析 ( I)根據(jù)正弦函數(shù)的圖象與性質(zhì),求出f(x)的最小正周期與單調(diào)增區(qū)間;
( II)求出x∈[-$\frac{π}{6}$,$\frac{π}{3}$]時(shí),sin(2x+$\frac{π}{6}$)的取值范圍,即可得出f(x)的值域.

解答 解:函數(shù)f(x)=2sin(2x+$\frac{π}{6}$)+2,x∈R,
( I)函數(shù)f(x)的最小正周期為T=$\frac{2π}{2}$=π;
令-$\frac{π}{2}$+2kπ≤2x+$\frac{π}{6}$≤$\frac{π}{2}$+2kπ,k∈Z,
得-$\frac{π}{3}$+kπ≤x≤$\frac{π}{6}$+kπ,k∈Z;
∴f(x)的單調(diào)遞增區(qū)間是[-$\frac{π}{3}$+kπ,$\frac{π}{6}$+kπ],k∈Z;
( II)當(dāng)x∈[-$\frac{π}{6}$,$\frac{π}{3}$]時(shí),
2x+$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$],
∴sin(2x+$\frac{π}{6}$)∈[-$\frac{1}{2}$,1],
∴2sin(2x+$\frac{π}{6}$)+2∈[1,4],
即函數(shù)f(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{3}$]上的值域是[1,4].

點(diǎn)評(píng) 本題考查了正弦型函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.拋物線y2=4x的焦點(diǎn)為F,過點(diǎn)(0,3)的直線與拋物線交于A,B兩點(diǎn),線段AB的垂直平分線交x軸于點(diǎn)D,若|AF|+|BF|=6,則點(diǎn)D的坐標(biāo)為(4,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)的圖象與函數(shù)h(x)=x+$\frac{1}{x}$+2的圖象關(guān)于點(diǎn)A(0,1)對(duì)稱.
(1)求f(x)的解析式;
(2)求f(x)在(0,8]內(nèi)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的焦距為4,點(diǎn)(2,-$\sqrt{2}}$)在C上
(1)求橢圓C有方程;
(2)若直線y=x+m與橢圓C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)M在圓x2+y2=1上,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合A={-2,-1,0,1,2},B={x|-2<x<2},則A∩B=(  )
A.{-2,-1,0,1,2}B.{-2,-1,0,1}C.{-1,0,1,2}D.{-1,0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知A={x|{x2+2x-3>0},B={x|$\frac{x-2}{x+2}$≤0},則(∁UA)∩B=( 。
A.(-2,+∞)B.(-2,1]C.[-1,2]D.(-3,-2)∪[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知正數(shù)x,y滿足x+2$\sqrt{2xy}$≤λ(x+y)恒成立,則實(shí)數(shù)λ的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.當(dāng)m為何值時(shí),方程x2-4|x|+5=m有四個(gè)互不相等的實(shí)數(shù)根?并討論m為何值時(shí),方程有三個(gè)實(shí)數(shù)根,兩個(gè)實(shí)數(shù)根,沒有實(shí)數(shù)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.命題:“?x0>0,使2${\;}^{{x}_{0}}$(x0-a)>1”,這個(gè)命題的否定是( 。
A.?x>0,使2x(x-a)>1B.?x>0,使2x(x-a)≤1C.?x≤0,使2x(x-a)≤1D.?x≤0,使2x(x-a)>1

查看答案和解析>>

同步練習(xí)冊(cè)答案