精英家教網 > 高中數學 > 題目詳情

(本題滿分12分) 設函數.
(Ⅰ)判斷能否為函數的極值點,并說明理由;
(Ⅱ)若存在,使得定義在上的函數處取得最大值,求實數的最大值.

(Ⅰ)當時,的極小值點;(Ⅱ) 

解析試題分析:(Ⅰ),令,得;   2’
時,,于是單調遞增,在單調遞減,
單調遞增.
故當時,的極小值點                  2’
(Ⅱ).
由題意,當時,恒成立              2’
易得,令,因為必然在端點處取得最大值,即               4’
,即,解得, ,
所以的最大值為 2’
考點:本題考查了導數的運用
點評:導數本身是個解決問題的工具,是高考必考內容之一,高考往往結合函數甚至是實際問題考查導數的應用,求單調、最值、完成證明等,請注意歸納常規(guī)方法和常見注意點,綜合考查運用知識分析和解決問題的能力,中等題

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數
(I)當時,討論函數的單調性:
(Ⅱ)若函數的圖像上存在不同兩點,設線段的中點為,使得在點處的切線與直線平行或重合,則說函數是“中值平衡函數”,切線叫做函數的“中值平衡切線”.
試判斷函數是否是“中值平衡函數”?若是,判斷函數的“中值平衡切線”的條數;若不是,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

若函數f(x)=ax3-bx+4,當x=2時,函數f(x)有極值-.
(1)求函數的解析式.
(2)若方程f(x)=k有3個不同的根,求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)若函數處的切線方程為,求實數,的值;
(2)若在其定義域內單調遞增,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,是否存在實數,使函數在上遞減,在上遞增?若存在,求出所有值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,
(I)當時,求曲線在點處的切線方程;
(II)在區(qū)間內至少存在一個實數,使得成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.(1)求函數的單調區(qū)間;
(2)設函數.若至少存在一個,使得成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數, 其中,的導函數.
(Ⅰ)若,求函數的解析式;
(Ⅱ)若,函數的兩個極值點為滿足. 設, 試求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分12分)
已知函數是實數集R上的奇函數,且在R上為增函數。
(Ⅰ)求的值;
(Ⅱ)求恒成立時的實數t的取值范圍。

查看答案和解析>>

同步練習冊答案