已知函數(shù)f(x)=
10-x-2,x≤0
2ax-1,x>0
(a是常數(shù)且a>0).給出下列命題:
①函數(shù)f(x)的最小值是-1;
②函數(shù)f(x)在R上是單調(diào)函數(shù);
③函數(shù)f(x)在(-∞,0)上的零點是x=lg
1
2

④若f(x)>0在[
1
2
,+∞)上恒成立,則a的取值范圍是[1,+∞);
⑤對任意的x1,x2<0且x1≠x2,恒有f(
x1+x2
2
)<
f(x1)+f(x2)
2

其中正確命題的序號是
 
.(寫出所有正確命題的序號)
考點:命題的真假判斷與應(yīng)用
專題:計算題,數(shù)形結(jié)合,函數(shù)的性質(zhì)及應(yīng)用,不等式的解法及應(yīng)用
分析:畫出函數(shù)f(x)=
10-x-2,x≤0
2ax-1,x>0
(a是常數(shù)且a>0)的圖象,
①由圖只需說明在點x=0處函數(shù)f(x)的最小值是-1;
②只需說明函數(shù)f(x)在R上的單調(diào)性即可;
③函數(shù)f(x)在(-∞,0)的零點是lg
1
2
;
④只需說明f(x)>0在[
1
2
,+∞)上恒成立,則當(dāng)x=
1
2
時,函數(shù)取得最小值,
從而求得a的取值范圍是a>1;
⑤已知函數(shù)f(x)的圖象在(-∞,0))上是下凹的,所以任取兩點連線應(yīng)在圖象的上方.
解答: 解:對于①,由圖只需說明在點x=0處函數(shù)f(x)的最小值是-1;故正確;
對于②,由圖象說明函函數(shù)f(x)在R上不是單調(diào)函數(shù);故錯;
對于③,函數(shù)f(x)在(-∞,0)的零點是lg
1
2
,故正確;
對于④,只需說明f(x)>0在[
1
2
,+∞)上恒成立,則當(dāng)x=
1
2
時,函數(shù)取得最小值,求得a的取值范圍是a>1;故錯;
對于⑤,已知函數(shù)f(x)在(-∞,0)上的圖象是下凹的,所以任取兩點連線應(yīng)在圖象的上方,即f(
x1+x2
2
)<
f(x1)+f(x2)
2
,故正確.
故答案為:①③⑤.
點評:利用函數(shù)的圖象研究函數(shù)的單調(diào)區(qū)間,以及根據(jù)函數(shù)的增減性得到函數(shù)的最值是常用的方法,解答本題的關(guān)鍵是圖象法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

命題“?x>0,x2-x≤0”的否定是(  )
A、?x0>0,x02-x0≤0
B、?x0>0,x02-x0>0
C、?x>0,x2-x>0
D、?x≤0,x2-x>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐P-ABC中,∠APB=90°,∠PAB=60°,AB=BC=CA,平面PAB⊥平面ABC.
(Ⅰ)求直線PC與平面ABC所成角的正弦值;
(Ⅱ)求二面角B-AP-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x、y滿足
x-y+1≥0
x+y-3≥0
2x-y-3≤0
,則目標(biāo)函數(shù)z=2x+3y的最小值為(  )
A、7B、8C、22D、23

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=lg(x-1)的定義域為(  )
A、(0,+∞)
B、(-∞,0)
C、(1,+∞)
D、(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有下列幾個命題:
(1)函數(shù)f(x)=sin(
π
3
-2x)(x∈R)在區(qū)間﹙-
π
12
,
12
﹚上單調(diào)遞增.
(2)當(dāng)α∈﹙0,
π
2
﹚時,sinα<α<tanα.
(3)若y=sinx-logax有5個零點,則實數(shù)a取值范圍﹙
2
11π
,
2
﹚∪﹙
2
,
13π
2
﹚.
(4)一種放射性元素的質(zhì)量按每年20%衰減,則這種射性元素的半衰期為2.5年(lg≈0.3).
(5)定義運(yùn)算
.
a
b
c
d
.
=ad-bc,已知函數(shù)?(x)=
.
sinx
cosx
1
3
.
,若方程f2(x)=k在區(qū)間﹙-
π
12
,
π
4
﹚上有兩解,實數(shù)k的范圍是(0,2,-
3
).
其中正確命題的序號是
 
.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sinωx(其中常數(shù)ω>0),若存在x1∈[-
3
,0)
x2∈(0,
π
4
]
,使得f(x1)=f(x2),則ω的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)(x∈R)滿足f(x+1)=
1
f(x)
,且當(dāng)x∈[-1,1]時,f(x)=|x|,函數(shù)g(x)=
sinπx,x≥0
-
1
x
,x<0
,則函數(shù)h(x)=f(x)-g(x)在區(qū)間[-5,5]上的零點的個數(shù)為( 。
A、8B、9C、10D、11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an},且a4+a8=
2
0
4-x2
dx,則a6(a2+2a6+a10)的值為( 。
A、π2B、4
C、πD、-9π

查看答案和解析>>

同步練習(xí)冊答案