2.已知tanα=2,
(1)求3cos2α+2sin2α的值;    
(2)求$\frac{{cos({π-α})cos({\frac{π}{2}+α})sin({α-\frac{3π}{2}})}}{{sin({3π+α})sin({α-π})cos({π+α})}}$的值.

分析 利用同角三角函數(shù)的基本關(guān)系、誘導(dǎo)公式,求得要求式子的值.

解答 解:(1)∵tanα=2,∴3cos2α+2sin2α=2+cos2α=2+$\frac{{cos}^{2}α}{{sin}^{2}α{+cos}^{2}α}$=2+$\frac{1}{{tan}^{2}α+1}$=2+$\frac{1}{5}$=$\frac{11}{5}$.
(2)$\frac{{cos({π-α})cos({\frac{π}{2}+α})sin({α-\frac{3π}{2}})}}{{sin({3π+α})sin({α-π})cos({π+α})}}$=$\frac{-cosα•(-sinα)•cosα}{-sinα•(-sinα)•(-cosα)}$=-cotα.

點評 本題主要考查同角三角函數(shù)的基本關(guān)系、誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.證明對數(shù)的換底公式logab=$\frac{lo{g}_{c}b}{lo{g}_{c}a}$(a>0,且a≠1,c>0,且c≠1,b>0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知樣本數(shù)據(jù)如表所示,若y與x線性相關(guān),且回歸方程為$\widehaty=\widehatbx+\frac{13}{2}$,則$\widehatb$=$-\frac{1}{2}$.
x234
y645

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}的前n項和為Sn,且Sn=ln(n+1).
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=ean(e為自然對數(shù)的底數(shù)),定義:$\underset{\stackrel{n}{π}}{k=1}$bk=b1•b2•b3…bn,求$\underset{\stackrel{n}{π}}{k=1}$bk

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知直線l經(jīng)過點A(3,2)、B(3,-2),則直線l的斜率為( 。
A.0B.1C.-1D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知△ABC為等邊三角形,在△ABC內(nèi)隨機(jī)取一點P,則△BCP為鈍角三角形的概率為(  )
A.$\frac{1}{4}+\frac{{\sqrt{3}}}{18}π$B.$\frac{1}{2}+\frac{{\sqrt{3}}}{18}π$C.$\frac{3}{4}-\frac{{\sqrt{3}}}{18}π$D.$\frac{1}{2}-\frac{{\sqrt{3}}}{18}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.1°=( 。﹔ad.
A.$\frac{180}{π}$B.$\frac{π}{180}$C.$\frac{360}{π}$D.$\frac{π}{360}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=sinxcosx-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{2}$(x∈R).
(1)求f(x)的最小正周期;
(2)求f(x)圖象的對稱軸方程和對稱中心的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)函數(shù)f′(x)是函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),若f(x)-f(-x)=2x3,且當(dāng)x>0時,f′(x)>3x2,則不等式f(x)-f(x-1)>3x2-3x+1的解集為(  )
A.(-∞,2)B.(${\frac{1}{2}$,+∞)C.(-∞,$\frac{1}{2}}$)D.(2,+∞)

查看答案和解析>>

同步練習(xí)冊答案