8.在△ABC中,角A,B,C的對邊分別為a,b,c,已知tanA=$\frac{3}{4}$,b=5c.
(I)求sinC的值;
(II)若△ABC的面積S=6sinBsinC,求a的值.

分析 (1)由$tanA=\frac{3}{4},0<A<π$,可得A為銳角,利用同角三角函數(shù)基本關系式可得sinA,cosA.再利用正弦定理余弦定理即可得出.
(2)由$S=\frac{1}{2}acsinB=6sinBsinC$,得$ac=\frac{{6\sqrt{2}}}{5}$,又$a=3\sqrt{2}c$,聯(lián)立解出即可得出.

解答 解:(1)∵$tanA=\frac{3}{4},0<A<π$,
∴A為銳角,
∴$sinA=\frac{3}{5},cosA=\frac{4}{5}$,
由余弦定理及b=5c,可得a2=b2+c2-2bccosA=18c2,即$a=3\sqrt{2}c$.
由正弦定理可得$sinC=\frac{csinA}{a}=\frac{{\sqrt{2}}}{10}$.
(2)由$S=\frac{1}{2}acsinB=6sinBsinC$,得$ac=\frac{{6\sqrt{2}}}{5}$,
又$a=3\sqrt{2}c$,解得$a=\frac{{6\sqrt{5}}}{5}$.

點評 本題考查了正弦定理余弦定理、三角函數(shù)求值、同角三角函數(shù)基本關系式、三角形面積計算公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

18.函數(shù)y=x2+bx+c在區(qū)間[0,+∞)上單調(diào)遞增的充要條件是( 。
A.b≥0B.b≤0C.b>0D.b<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.某程序框圖如圖所示,則該程序運行后輸出的值是( 。
A.0B.$\frac{{\sqrt{3}}}{2}$C.$\sqrt{3}$D.$504\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知tan(α+β)=$\frac{3}{5}$,tan(β+$\frac{π}{4}$)=$\frac{1}{2}$,則tan(α-$\frac{π}{4}$)=$\frac{1}{13}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知函數(shù)f(x)=sin(ωx+$\frac{π}{4}$)(ω>0)的最小正周期為$\frac{π}{2}$,則該函數(shù)的圖象(  )
A.關于直線x=$\frac{π}{4}$對稱B.關于點($\frac{3π}{16}$,0)對稱
C.關于直線x=$\frac{3π}{16}$對稱D.關于點($\frac{π}{16}$,0)對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.設進入某商場的每一位顧客購買甲種商品的概率為0.5,購買乙種商品的概率為0.6,且購買甲種商品與購買乙種商品相互獨立,各顧客之間購買商品也是相互獨立的.
(I) 求進入商場的1位顧客購買甲,乙兩種商品中的一種的概率;
(II)求進入商場的1位顧客至少購買甲,乙兩種商品中的一種概率;
(III)用ξ表示進入商場的3位顧客中至少購買甲,乙兩種商品中的一種的人數(shù),求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖,在圓的內(nèi)接四邊形ABCD中,∠DAC=30°,∠CAB=45°,且$\widehat{AD}=\widehat{BC}$,過點A作圓的切線交CD延長線于點T.
(1)求∠DAT.
(2)證明:BC•AD=AB•DT.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.在直角坐標系xOy中,圓C的方程為(x-1)2+(y-2)2=1,以原點O為極點,以x軸正半軸為極軸建立極坐標系.
(1)求圓C的極坐標方程;
(2)若直線l的參數(shù)方程為=$\left\{\begin{array}{l}{x=1+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$(t為參數(shù)),求圓C上的點到直線l的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知$|\begin{array}{l}{a}&\\{c}&ilzgjub\end{array}|$=ad-bc,設f(x)=$|\begin{array}{l}{mx}&{m}\\{2x}&{x+1}\end{array}|$
(1)若不等式f(x)<1的解集為R,求m的取值范圍.
(2)若任意的x∈[1,3],不等式f(x)<6-m恒成立,求m的取值范圍.

查看答案和解析>>

同步練習冊答案