已知函數(shù)f(x)=x+
1
x
,則下列說法正確的是( 。
A、f(x)是增函數(shù)
B、f(x)是減函數(shù)
C、f(x)是奇函數(shù)
D、f(x)是偶函數(shù)
考點(diǎn):函數(shù)奇偶性的判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)的性質(zhì)進(jìn)行判斷即可.
解答: 解:函數(shù)的定義域?yàn)椋?∞,0)∪(0,+∞),
則f(-x)=-x-
1
x
=-(x+
1
x
)=-f(x),
即函數(shù)f(x)為奇函數(shù),
故選:C
點(diǎn)評:本題主要考查函數(shù)奇偶性的判斷,根據(jù)定義是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知n∈N*,且(-
1
4
n<(-
1
3
n,則n的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面直角坐標(biāo)系xOy中,
AB
=(2,1),
AC
=(3,k),若△ABC是直角三角形,則%ξ的可能值的個數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知f(x)=x+
1
x
-1,f(a)=2,則f(-a)=(  )
A、-4B、-2C、-1D、-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)為R至R的函數(shù),且對任意實(shí)數(shù),有f(x2+x)+2f(x2-3x+2)=9x2-15x,則f(50)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:-2≤
4-x
3
≤2,q:x2-2x+1-m2≤0(m>0),若¬p是¬q的必要不充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2lg2+lg25=( 。
A、1B、2C、10D、100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)化簡:
(1+sinα+cosα)(sin
α
2
-cos
α
2
)
2+2cosα
 (0<α<π).
(2)化簡:[2sin 50°+sin 10°(1+
3
tan 10°)]•
2sin280°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin2a+sina+b=0方程有解,求b的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案