【題目】某市實施二手房新政一年多以來,為了了解新政對居民的影響,房屋管理部門調(diào)查了20186月至20196月期間購買二手房情況,首先隨機抽取了其中的400名購房者,并對其購房面積(單位:平方米,)講行了一次統(tǒng)計,制成了如圖1所示的頻率分布直方圖,接著調(diào)查了該市20186月至20196月期間當(dāng)月在售二手房的均價(單位:萬元/平方米),制成了如圖2所示的散點圖(圖中月份代碼113分別對應(yīng)20186月至20196月)

1)試估計該市市民的平均購房面積(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表);

2)從該市20186月至20196月期間所有購買二手房的市民中任取3人,用頻率估計概率,記這3人購房面積不低于100平方米的人數(shù)為,求的分布列與數(shù)學(xué)期望;

3)根據(jù)散點圖選擇兩個模型講行擬合,經(jīng)過數(shù)據(jù)處理得到兩個回歸方程,分別為,并得到一些統(tǒng)計量的值,如表所示:

0.005459

0.005886

0.006050

請利用相關(guān)系數(shù)判斷哪個模型的擬合效果更好,并用擬合效果更好的模型預(yù)測20198月份的二手房購房均價(精確到0.001.

參考數(shù)據(jù):,,,

參考公式:

【答案】(1);(2)1.2;(3)模型的擬合效果更好,預(yù)測20198月份的二手房購房均價萬元/平方米.

【解析】

1)求解每一段的組中值與頻率的乘積,然后相加得出結(jié)果;(2)分析可知隨機變量服從二項分布,利用二項分布的概率計算以及期望計算公式來解答;(3)根據(jù)相關(guān)系數(shù)的值來判斷選用哪一個模型,并進行數(shù)據(jù)預(yù)測.

解:(1.

2)每一位市民購房面積不低干100平方米的概率為

,

,

,

,

的分布列為

0

1

2

3

0.216

0.432

0.288

0.064

.

3)設(shè)模型的相關(guān)系數(shù)分別為,

,,

∴模型的擬合效果更好,

20198月份對應(yīng)的,

萬元/平方米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為平行四邊形,.且底面.

(1)證明:平面平面 ;

(2)若的中點,且,求二面角的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】假設(shè)某種人壽保險規(guī)定,投保人沒活過65歲,保險公司要賠償10萬元;若投保人活過65歲,則保險公司不賠償,但要給投保人一次性支付4萬元已知購買此種人壽保險的每個投保人能活過65歲的概率都為,隨機抽取4個投保人,設(shè)其中活過65歲的人數(shù)為,保險公司支出給這4人的總金額為萬元(參考數(shù)據(jù):)

(1)指出X服從的分布并寫出的關(guān)系;

(2).(結(jié)果保留3位小數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將紅、黑、藍、白5張紙牌(其中白紙牌有2張)隨機分發(fā)給甲、乙、丙、丁4個人,每人至少分得1張,則下列兩個事件為互斥事件的是( )

A. 事件“甲分得1張白牌”與事件“乙分得1張紅牌”

B. 事件“甲分得1張紅牌”與事件“乙分得1張藍牌”

C. 事件“甲分得1張白牌”與事件“乙分得2張白牌”

D. 事件“甲分得2張白牌”與事件“乙分得1張黑牌”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓()的左、右焦點分別是,,點的上頂點,點上,,且.

1)求的方程;

2)已知過原點的直線與橢圓交于,兩點,垂直于的直線且與橢圓交于兩點,若,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了紀念“一帶一路”倡議提出五周年,某城市舉辦了一場知識競賽,為了了解市民對“一帶一路”知識的掌握情況,從回收的有效答卷中按青年組和老年組各隨機抽取了40份答卷,發(fā)現(xiàn)成績都在內(nèi),現(xiàn)將成績按區(qū)間,,,,進行分組,繪制成如下的頻率分布直方圖.

青年組

中老年組

(1)利用直方圖估計青年組的中位數(shù)和老年組的平均數(shù);

(2)從青年組,的分數(shù)段中,按分層抽樣的方法隨機抽取5份答卷,再從中選出3份答卷對應(yīng)的市民參加政府組織的座談會,求選出的3位市民中有2位來自分數(shù)段的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某水域受到污染,水務(wù)部門決定往水中投放一種藥劑來凈化水質(zhì),已知每次投放質(zhì)量為的藥劑后,經(jīng)過)天,該藥劑在水中釋放的濃度(毫克升)為,其中,當(dāng)藥劑在水中釋放濃度不低于(毫克升)時稱為有效凈化,當(dāng)藥劑在水中釋放的濃度不低于(毫克升)且不高于(毫克升)時稱為最佳凈化.

1)如果投放的藥劑質(zhì)量為,那么該水域達到有效凈化一共可持續(xù)幾天?

2)如果投放的藥劑質(zhì)量為,為了使該水域天(從投放藥劑算起,包括第天)之內(nèi)都達到最佳凈化,確定應(yīng)該投放的藥劑質(zhì)量的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)將甲、乙兩個學(xué)生在高二的6次數(shù)學(xué)測試的成績(百分制)制成如圖所示的莖葉圖,進入高三后,由于改進了學(xué)習(xí)方法,甲、乙這兩個學(xué)生的考試成績預(yù)計同時有了大的提升:若甲(乙)的高二任意一次考試成績?yōu)?/span>,則甲(乙)的高三對應(yīng)的考試成績預(yù)計為.

(1)試預(yù)測:高三6次測試后,甲、乙兩個學(xué)生的平均成績分別為多少?誰的成績更穩(wěn)定?

(2)若已知甲、乙兩個學(xué)生的高二6次考試成績分別由低到高進步的,定義為高三的任意一次考試后甲、乙兩個學(xué)生的當(dāng)次成績之差的絕對值,求的平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題;命題關(guān)于的方程有兩個相異實數(shù)根.

1)若為真命題,求實數(shù)的取值范圍;

2)若為真命題,為假命題,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案