6.若直線l交拋物線C:y2=2px(p>0)于兩不同點A,B,且|AB|=3p,則線段AB中點M到y(tǒng)軸距離的最小值為( 。
A.$\frac{p}{2}$B.pC.$\frac{3p}{2}$D.2p

分析 l:x=-$\frac{p}{2}$,分別過A,B,M作AC⊥l,BD⊥l,MH⊥l,垂足分別為C,D,H,要求M到y(tǒng)軸的最小距離,只要先由拋物線的定義求M到拋物線的準(zhǔn)線的最小距離d,然后用d-$\frac{p}{2}$,即可求解.

解答 解:由題意可得拋物線的準(zhǔn)線l:x=-$\frac{p}{2}$
分別過A,B,M作AC⊥l,BD⊥l,MH⊥l,垂足分別為C,D,H
在直角梯形ABDC中,MH=$\frac{1}{2}$(AC+BD),
由拋物線的定義可知AC=AF,BD=BF(F為拋物線的焦點)
MH=$\frac{1}{2}$(AE+BF)≥$\frac{1}{2}$AB=$\frac{3}{2}$p
即AB的中點M到拋物線的準(zhǔn)線的最小距離為$\frac{3}{2}$p,
∴線段AB中點M到y(tǒng)軸距離的最小值為$\frac{3}{2}$p-$\frac{p}{2}$=p,
故選:B.

點評 本題考查線段中點到y(tǒng)軸距離的最小值的求法,解題時要認(rèn)真審題,注意拋物線性質(zhì)的合理運用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知條件p:f(x)=x2+mx+1在區(qū)間($\frac{1}{2}$,+∞)上單調(diào)遞增,條件q:m≥-$\frac{4}{3}$,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點為F,右準(zhǔn)線l與兩條漸近線交于P、Q兩點,如果△PQF是等邊三角形,則雙曲線的離心率是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求證:PC⊥BC;
(2)求三棱錐A-BCP的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖所示,正方體ABCD-A1B1C1D1的棱長為4,P為BC的中點,Q為線段CC1上的動點,過點A、P、Q的平面截正方體所得的截面即為S.
①當(dāng)CQ=2時,被S截得的較小幾何體為棱臺;
②當(dāng)3<CQ<4時,S為五邊形;
③當(dāng)CQ=3時,S與C1D1的交點R滿足D1R=1;
④當(dāng)CQ=4時,S截正方體兩部分的體積之比為1:1.
則以上命題正確的是①②④  (寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.拋物線y2=2px(p>o)的準(zhǔn)線被圓x2+y2+2x-3=0所截得的線段長為4,則p=(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=|x|,g(x)=-|x-4|+m.
(1)解關(guān)于x的不等式g[f(x)]+3-m>0;
(2)若函數(shù)f(x)的圖象恒在函數(shù)g(2x)圖象的上方,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左右焦點分別為F1,F(xiàn)2,短軸兩個端點為A,B,且四邊形F1AF2B是邊長為2的正方形.
(1)求橢圓C的方程;
(2)設(shè)P是橢圓C上一點,M($\frac{1}{2}$,0)為橢圓長軸上一點,求|PM|的最大值與最小值;
(3)設(shè)Q是橢圓外C的動點,滿足|$\overrightarrow{{F_1}Q}$|=4,點R是線段F1Q與該橢圓的交點,點T在線段F2Q上,并且滿足$\overrightarrow{RT}$•$\overrightarrow{T{F_2}}$=0,|$\overrightarrow{T{F_2}}$|≠0,求點T的軌跡C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.命題p:?x<0,x2<2x,則命題¬p為(  )
A.?x0<0,x02<2${\;}^{{x}_{0}}$B.?x0≥0,x02≥2${\;}^{{x}_{0}}$
C.?x0<0,x02≥2${\;}^{{x}_{0}}$D.?x0≥0,x02<2${\;}^{{x}_{0}}$

查看答案和解析>>

同步練習(xí)冊答案