【題目】給出四個(gè)命題
(1)若sin2A=sin2B,則△ABC為等腰三角形;
(2)若sinA=cosB,則△ABC為直角三角形;
(3)若sin2A+sin2B+sin2C<2,則△ABC為鈍角三角形;
(4)若cos(A-B)cos(B-C)cos(C-A)=1,則△ABC為正三角形.
以上正確命題的是_______.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=|x-3|-|x+1|,x∈R.
(1)解不等式f(x)<-1;
(2)設(shè)函數(shù)g(x)=|x+a|-4,且g(x)≤f(x)在x∈[-2,2]上恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|2x-1|+|x-2a|.
(1)當(dāng)a=1時(shí),求f(x)≤3的解集;
(2)當(dāng)x∈[1,2]時(shí),f(x)≤3恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知冪函數(shù)(m∈Z)為偶函數(shù),且在區(qū)間(0,+∞)上是單調(diào)增函數(shù).
(1)求函數(shù)f(x)的解析式;
(2)設(shè)函數(shù),若g(x)>2對(duì)任意的x∈R恒成立,求實(shí)數(shù)c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x3+ax2+bx+a2.
(I)若f(x)在x=1處有極值10,求a,b的值;
(II)若當(dāng)a=-1時(shí),f(x)<0在x∈[1,2]恒成立,求b的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】本著健康、低碳的生活理念,租用公共自行車(chē)的人越來(lái)越多.租用公共自行車(chē)的收費(fèi)標(biāo)準(zhǔn)是每車(chē)每次不超過(guò)兩小時(shí)免費(fèi),超過(guò)兩小時(shí)的部分每小時(shí)2元(不足1小時(shí)的部分按1小時(shí)計(jì)算).甲乙兩人相互獨(dú)立租車(chē)(各租一車(chē)一次).設(shè)甲、乙不超過(guò)兩小時(shí)還車(chē)的概率分別為, ;兩小時(shí)以上且不超過(guò)三小時(shí)還車(chē)的概率分別為, ;兩人租車(chē)時(shí)間都不會(huì)超過(guò)四小時(shí).
(1)求出甲、乙所付租車(chē)費(fèi)用相同的概率;
(2)設(shè)甲、乙兩人所付的租車(chē)費(fèi)用之和為隨機(jī)變量,求隨機(jī)變量的概率分布和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a是實(shí)數(shù),函數(shù)f(x)= (x-a).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)g(a)為f(x)在區(qū)間[0,2]上的最小值.
①寫(xiě)出g(a)的表達(dá)式;
②求a的取值范圍,使得-6≤g(a)≤-2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下是解決數(shù)學(xué)問(wèn)題的思維過(guò)程的流程圖:
在此流程圖中,①、②兩條流程線與“推理與證明”中的思維方法匹配正確的是( )
A. ①—分析法,②—反證法 B. ①—分析法,②—綜合法
C. ①—綜合法,②—反證法 D. ①—綜合法,②—分析法
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)圖象上點(diǎn)處的切線方程與直線平行(其中),.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)求函數(shù)在()上的最小值;
(Ⅲ)對(duì)一切, 恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com