4.已知f(x)為二次函數(shù),f(0)=2,且滿足f(x+1)-f(x)=2x-1.
(1)求f(x)的表達(dá)式;
(2)當(dāng)x∈[-2,2]時(shí),求函數(shù)的值域;
(3)當(dāng)∈[t,t+1]時(shí),求f(x)的最小值.

分析 (1)要求二次函數(shù)的解析式,利用直接設(shè)解析式的方法,一定要注意二次項(xiàng)系數(shù)不等于零,在解答的過程中使用系數(shù)的對應(yīng)關(guān)系,解方程組求的結(jié)果.
(2)根據(jù)二次函數(shù)的性質(zhì)即可求出最值,
(3)分析函數(shù)f(x)=x2-2x+2的圖象和性質(zhì),進(jìn)而分類討論給定區(qū)間與對稱軸的關(guān)系,進(jìn)而得到函數(shù)在給定區(qū)間上的單調(diào)性,進(jìn)而可得答案

解答 解:(1)設(shè)二次函數(shù)的解析式為f(x)=ax2+bx+c (a≠0)
由f(0)=2得c=2,
故f(x)=ax2+bx+2.
因?yàn)閒(x+1)-f(x)=2x-1,
所以a(x+1)2+b(x+1)+2-(ax2+bx+2)=2x-1.
即2ax+a+b=2x-1,
∴$\left\{\begin{array}{l}{2a=2}\\{a+b=-1}\end{array}\right.$,
解得a=1,b=-2,
∴f(x)=x2-2x+2,
(2)f(x)的對稱軸為x=1,
∴f(x)min=f(1)=1,
f(x)max=f(-2)=10,
∴f(x)的值域?yàn)閇1,10],
(3)當(dāng)t≥1時(shí),f(x)在[t,t+1]上遞增,
∴f(x)min=f(t)=t2-2t+2,
當(dāng)t<1<t+1時(shí),即0<t<1時(shí),
f(x)min=f(1)=1,
當(dāng)t+1≤1時(shí),即t≤0時(shí),f(x)在[t,t+1]上遞減,
f(x)min=f(t+1)=t2+1,
綜上所述,
f(x)min=$\left\{\begin{array}{l}{{t}^{2}-2t+2,t≥1}\\{1,0<t<1}\\{{t}^{2}+1,t≤0}\end{array}\right.$

點(diǎn)評 本題考查的知識點(diǎn)是二次函數(shù)的圖象和性質(zhì),熟練掌握二次函數(shù)的圖象和性質(zhì),是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知{an}滿足a1=1,an+an+1=($\frac{1}{3}$)n(n∈N*),Sn=a1+a2•3+a3•32+…+an•3n-1,類比課本中推導(dǎo)等比數(shù)列前n項(xiàng)和公式的方法,可求得4Sn-an•3n=n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知圓O:x2+y2=10,過點(diǎn)P(-3,-4)的直線l與圓O相交于A,B兩點(diǎn),若△AOB的面積為5,則直線l的斜率為$\frac{1}{2}$或$\frac{11}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若關(guān)于x的不等式x2+|x-a|<2至少有一個(gè)正數(shù)解,則實(shí)數(shù)a的取值范圍是$(-2,\frac{9}{4})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果為5,則整數(shù)m值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)$f(x)=\frac{1}{x}ln(-{x^2}-3x+4)$的定義域是(  )
A.(-∞,-4]∪[1,+∞)B.(-4,0)∪(0,1)C.(-4,1)D.(-∞,-4)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.函數(shù)f(x)=ex-ax-1,其中a為實(shí)數(shù).
(1)若a=1,求函數(shù)f(x)的最小值.
(2)若函數(shù)f(x)在(0,2]上有零點(diǎn),求a的取值范圍.
(3)求證:$ln2+ln3+ln4+…+ln({n+1})<\frac{{{{({n+1})}^2}}}{2}({n∈{N^*}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.由點(diǎn)(2,2)向圓(x-3)2+y2=1引切線,則切線段長為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)y=tan(2x-$\frac{π}{4}$)的定義域是( 。
A.{x|x≠$\frac{kπ}{2}$+$\frac{3π}{8}$,k∈Z}B.{x|x≠$\frac{kπ}{2}$+$\frac{3π}{4}$,k∈Z}C.{x|x≠kπ+$\frac{3π}{8}$,k∈Z}D.{x|x≠kπ+$\frac{3π}{4}$,k∈Z}

查看答案和解析>>

同步練習(xí)冊答案