分析 (1)要求二次函數(shù)的解析式,利用直接設(shè)解析式的方法,一定要注意二次項(xiàng)系數(shù)不等于零,在解答的過程中使用系數(shù)的對應(yīng)關(guān)系,解方程組求的結(jié)果.
(2)根據(jù)二次函數(shù)的性質(zhì)即可求出最值,
(3)分析函數(shù)f(x)=x2-2x+2的圖象和性質(zhì),進(jìn)而分類討論給定區(qū)間與對稱軸的關(guān)系,進(jìn)而得到函數(shù)在給定區(qū)間上的單調(diào)性,進(jìn)而可得答案
解答 解:(1)設(shè)二次函數(shù)的解析式為f(x)=ax2+bx+c (a≠0)
由f(0)=2得c=2,
故f(x)=ax2+bx+2.
因?yàn)閒(x+1)-f(x)=2x-1,
所以a(x+1)2+b(x+1)+2-(ax2+bx+2)=2x-1.
即2ax+a+b=2x-1,
∴$\left\{\begin{array}{l}{2a=2}\\{a+b=-1}\end{array}\right.$,
解得a=1,b=-2,
∴f(x)=x2-2x+2,
(2)f(x)的對稱軸為x=1,
∴f(x)min=f(1)=1,
f(x)max=f(-2)=10,
∴f(x)的值域?yàn)閇1,10],
(3)當(dāng)t≥1時(shí),f(x)在[t,t+1]上遞增,
∴f(x)min=f(t)=t2-2t+2,
當(dāng)t<1<t+1時(shí),即0<t<1時(shí),
f(x)min=f(1)=1,
當(dāng)t+1≤1時(shí),即t≤0時(shí),f(x)在[t,t+1]上遞減,
f(x)min=f(t+1)=t2+1,
綜上所述,
f(x)min=$\left\{\begin{array}{l}{{t}^{2}-2t+2,t≥1}\\{1,0<t<1}\\{{t}^{2}+1,t≤0}\end{array}\right.$
點(diǎn)評 本題考查的知識點(diǎn)是二次函數(shù)的圖象和性質(zhì),熟練掌握二次函數(shù)的圖象和性質(zhì),是解答的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-4]∪[1,+∞) | B. | (-4,0)∪(0,1) | C. | (-4,1) | D. | (-∞,-4)∪(1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|x≠$\frac{kπ}{2}$+$\frac{3π}{8}$,k∈Z} | B. | {x|x≠$\frac{kπ}{2}$+$\frac{3π}{4}$,k∈Z} | C. | {x|x≠kπ+$\frac{3π}{8}$,k∈Z} | D. | {x|x≠kπ+$\frac{3π}{4}$,k∈Z} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com