19.為支援西部教育事業(yè),從某校118名教師中隨機(jī)抽取16名教師組成暑期西部講師團(tuán).若先用簡(jiǎn)單隨機(jī)抽樣從118名教師中剔除6名,剩下的112名再按系統(tǒng)抽樣的方法進(jìn)行,則每人入選的可能性( 。
A.不全相等B.都相等,且為$\frac{8}{59}$C.均不相等D.都相等,且為$\frac{1}{7}$

分析 該題是系統(tǒng)抽樣,在抽樣過(guò)程中每個(gè)個(gè)體被抽到的概率是樣本容量除以總體個(gè)數(shù),先用簡(jiǎn)單隨機(jī)抽樣從118名教師中剔除6名,在剔除過(guò)程中每個(gè)個(gè)體被抽到的概率相等.

解答 解:由題意知本題是一個(gè)系統(tǒng)抽樣,
在抽樣過(guò)程中每個(gè)個(gè)體被抽到的概率是樣本容量除以總體個(gè)數(shù),
從先用簡(jiǎn)單隨機(jī)抽樣從118名教師中剔除6名,在剔除過(guò)程中每個(gè)個(gè)體被抽到的概率相等,
∴得到每個(gè)個(gè)體被抽到的概率是$\frac{16}{118}$=$\frac{8}{59}$
故選B.

點(diǎn)評(píng) 本題考查系統(tǒng)抽樣和簡(jiǎn)單隨機(jī)抽樣,不管用什么方法抽樣,在抽樣過(guò)程中每個(gè)個(gè)體被抽到的概率都相等,本題是一個(gè)基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若數(shù)列{bn}是首項(xiàng)為$\frac{1}{2}$,公比為$\frac{1}{2}$的等比數(shù)列,則數(shù)列{nbn}的前n項(xiàng)和Tn=( 。
A.2-($\frac{1}{2}$)n-1B.2-($\frac{1}{2}$)nC.2-$\frac{n+2}{{2}^{n}}$D.2-$\frac{n+1}{{2}^{n}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.從集合{1,2,3,4,5}中隨機(jī)選取一個(gè)數(shù)a,從集合{2,3,4}中隨機(jī)選取一個(gè)數(shù)b,則b>a的概率是$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若等差數(shù)列an滿足a3+a5+a7+a9+a11=80,則a8-$\frac{1}{2}{a_9}$=(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知點(diǎn)(1,1)和(0,1)在直線3x-2y+a=0的異側(cè),則a的取值范圍為(-1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=sin(2x+φ),其中φ為實(shí)數(shù),若f(x)≤|f($\frac{π}{6}$)|,對(duì)x∈R恒成立,且f($\frac{π}{2}$)>f(π).
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)在[0,π]上的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若a<0,-1<b<0,則下列不等式關(guān)系成立的是( 。
A.ab2<ab<aB.a<ab<ab2C.ab2<a<abD.a<ab2<ab

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=tanx,x∈(0,$\frac{π}{2}$),若x1,x2∈(0,$\frac{π}{2}$),且x1≠x2
(Ⅰ)用分析法證明:$\frac{1}{2}$[f(x1)+f(x2)]>f($\frac{{{x_1}+{x_2}}}{2}$);
(Ⅱ)借助圖象,分析函數(shù)y1=ex,y2=lnx是否符合上述性質(zhì)(無(wú)需證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知遞增的等比數(shù)列{an}滿足:a2=4,a1+a2+a3=14
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)證明:數(shù)列{an}中任意三項(xiàng)不能構(gòu)成等差數(shù)列.

查看答案和解析>>

同步練習(xí)冊(cè)答案