如圖,在長方體中,已知上下兩底面為正方形,且邊長均為1;側(cè)棱,為中點,為中點,為上一個動點.
(Ⅰ)確定點的位置,使得;
(Ⅱ)當(dāng)時,求二面角的平面角余弦值.
(Ⅰ)為的四等分點;(Ⅱ) .
解析試題分析:(Ⅰ)用向量法的解題步驟是建立恰當(dāng)?shù)目臻g直角坐標(biāo)系,寫出相應(yīng)的點的坐標(biāo)及向量的坐標(biāo),利用向量的數(shù)量積為0,則這兩個向量垂直,得出結(jié)論;(Ⅱ)二面角的問題,找到兩個平面的法向量的夾角,利用向量的夾角公式求解.
試題解析:方法一:
(Ⅰ)如圖,分別以所在直線為軸建立空間直角坐標(biāo)系,則
易得 2分
由題意得,設(shè)
又
則由得,
∴,得為的四等分點. 6分
(Ⅱ)易知平面的一個法向量為,設(shè)平面的法向量為
則,得,取,得, 10分
∴,∴二面角的平面角余弦值為.12分
方法二:
(Ⅰ)∵在平面內(nèi)的射影為,且四邊形為正方形,為中點, ∴
同理,在平面內(nèi)的射影為,則
由△~△, ∴,得為的四等分點. 6分
(Ⅱ)∵平面,過點作,垂足為;
連結(jié),則為二面角的平面角; 8分
由,得,解得
∴在中,,
∴;∴二面角的平面角余弦值為. 12分
考點:線面垂直的判定定理,二面角,線面成角的計算.
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,AC 是圓 O 的直徑,點 B 在圓 O 上,∠BAC=30°,BM⊥AC交 AC 于點 M,EA⊥平面ABC,F(xiàn)C//EA,AC=4,EA=3,F(xiàn)C=1.
(I)證明:EM⊥BF;
(II)求平面 BEF 與平面ABC 所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,六棱錐的底面是邊長為1的正六邊形,底面。
(Ⅰ)求證:平面平面;
(Ⅱ)若直線PC與平面PDE所成角為,求三棱錐高的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,PA丄平面ABCD,,,AD=AB=1,AC和BD交于O點.
(I)求證:平面PBD丄平面PAC.
(II)當(dāng)點A在平面PBD內(nèi)的射影G恰好是ΔPBD的重心時,求二面角B-PD-A的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖1,四棱錐中,底面,面是直角梯形,為側(cè)棱上一點.該四棱錐的俯視圖和側(cè)(左)視圖如圖2所示.
(Ⅰ)證明:平面;
(Ⅱ)證明:∥平面;
(Ⅲ)線段上是否存在點,使與所成角的余弦值為?若存在,找到所有符合要求的點,并求的長;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,三棱柱A1B1C1—ABC的三視圖中,正(主)視圖和側(cè)(左)視圖是全等的矩形,俯視圖是等腰直角三角形,點M是A1B1的中點.
(1)求證:B1C∥平面AC1M;
(2)求證:平面AC1M⊥平面AA1B1B.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com