14.一個等比數(shù)列的前n項和為Sn=48,前2n項之和S2n=60,則S3n=63.

分析 由等比數(shù)列的性質(zhì)可得Sn,S2n-Sn,S3n-S2n成等比數(shù)列,代入已知數(shù)據(jù)計算可得.

解答 解:由等比數(shù)列的性質(zhì)可得Sn,S2n-Sn,S3n-S2n成等比數(shù)列,
∴48,12,S3n-60成等比數(shù)列,
∴48(S3n-60)=122,
解得S3n=63.
故答案是:63.

點評 本題考查等比數(shù)列的求和公式的性質(zhì),屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.將函數(shù)f(x)=2sin(ωx+$\frac{π}{3}}$)(ω>0)的圖象向右平移$\frac{π}{3ω}$個單位,得到函數(shù)y=g(x)的圖象,若y=g(x)在$[{-\frac{π}{3},\frac{π}{4}}]$上為增函數(shù),則ω的最大值為(  )
A.1B.2C.$\frac{3}{2}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)函數(shù)f(x)=x2+ax+b(a,b∈R).已知當|x|≤1時,|f(x)|≤1恒成立.
(1)若a=0,求實數(shù)b的取值范圍;
(2)求a-3b的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如圖,在三棱錐S-ABC中,底面是邊長為1的等邊三角形,側(cè)棱長均為2,SO⊥底面ABC,O為垂足,則側(cè)棱SA與底面ABC所成角的余弦值為$\frac{\sqrt{3}}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知四棱錐P-ABCD的側(cè)棱長與底面邊長都相等,四邊形ABCD為正方形,點E是PB的中點,則異面直線AE與PD所成角的余弦值為( 。
A.$\frac{1}{3}$B.$\frac{{\sqrt{2}}}{3}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若不等式(x+y)($\frac{1}{x}$+$\frac{4}{y}$)≥m,對任意正實數(shù)x,y恒成立,則實數(shù)m的取值范圍是( 。
A.[3,+∞)B.[6,+∞)C.(-∞,9]D.(-∞,12]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知關(guān)于的不等式$\frac{ax-3}{{x}^{2}-a}$≤0的解集為M.
(1)若3∈M,且5∉M,求實數(shù)a的取值范圍;
(2)若a>3,求集合M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知命題p:“方程x2+mx+1=0恰好有兩個不相等的負根”;
命題q:“不等式3x-m+1≤0存在實數(shù)解”.若p∨q為真命題,p∧q為假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.一組數(shù)據(jù)的方差是5,將這組數(shù)據(jù)中的每一個數(shù)據(jù)都乘以2,再加3,所得到的一組數(shù)據(jù)的方差是20.

查看答案和解析>>

同步練習(xí)冊答案