4.一組數(shù)據(jù)的方差是5,將這組數(shù)據(jù)中的每一個數(shù)據(jù)都乘以2,再加3,所得到的一組數(shù)據(jù)的方差是20.

分析 方差是用來衡量一組數(shù)據(jù)波動大小的量,每個數(shù)都乘以a,所以平均數(shù)變,方差也變.

解答 解:由題意知,原來的平均數(shù)為$\overline{x}$,新數(shù)據(jù)的平均數(shù)變?yōu)?$\overline{x}$+3,
原來的方差S2=$\frac{1}{n}$[(x1-$\overline{x}$)2+(x2-$\overline{x}$)2+…+(xn-$\overline{x}$)2]=5,
現(xiàn)在的方差S′2=$\frac{1}{n}$[(2x1+3-2$\overline{x}$-3)2+(2x2+3-2$\overline{x}$-3)2+…+(2xn+3-2$\overline{x}$-3)2]
=$\frac{1}{n}$[4(x1-$\overline{x}$)2+4(x2-$\overline{x}$)2+…+4(xn-$\overline{x}$)2]
=4s2
=4×5=20.
所以求得新數(shù)據(jù)的方差為20.
故答案為:20.

點評 本題考查了當數(shù)據(jù)都乘以一個數(shù)a時,方差變?yōu)樵瓉淼腶2倍,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

14.一個等比數(shù)列的前n項和為Sn=48,前2n項之和S2n=60,則S3n=63.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.若輸入a=16,A=1,S=0,n=1,執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為( 。
A.8B.7C.6D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.下列命題中是假命題的是( 。
A.?m∈R,使$f(x)=(m-1)•{x^{{m^2}-4m+3}}$是冪函數(shù)
B.?α,β∈R,使cos(α+β)=cosα+cosβ
C.?φ∈R,函數(shù)f(x)=sin(x+φ)都不是偶函數(shù)
D.?a>0,函數(shù)f(x)=ln2x+lnx-a有零點

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.ABC中,角A,B,C的對邊分別為a,b,c,且2bcosC+c=2a.
(1)求角B的大;
(2)若BD為AC邊上的中線,cosA=$\frac{1}{7}$,BD=$\frac{{\sqrt{129}}}{2}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=x3+ax2+bx(其中常數(shù)a,b∈R),g(x)=f(x)-f′(x)是奇函數(shù),
(1)求f(x)的表達式;
(2)求g(x)在[1,3]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.設函數(shù)f(x)=$\frac{1}{{{{(|x-1|-a)}^2}}}$的定義域為D,其中a<1.
(1)當a=-3時,寫出函數(shù)f(x)的單調(diào)區(qū)間(不要求證明);
(2)若對于任意的x∈[0,2]∩D,均有f(x)≥kx2成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知如圖PA⊥平面ABCD,四邊形ABCD是矩形,E、F分別是AB、PD的中點,求證:AF∥平面PCE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)$y={sin^4}x+2\sqrt{3}sinxcosx-{cos^4}x$
(1)求該函數(shù)的最小正周期和取最小值時x的集合;
(2)若x∈[0,π],求該函數(shù)的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習冊答案