分析 (1)利用余弦定理進(jìn)行推斷、證明;
(2)由(a2-b2)sin(A+B)=(a2+b2)sin(A-B),得(a2-b2)sinC=(a2+b2)sin(A-B),右邊展開兩角差的正弦,結(jié)合正弦定理和余弦定理得到a2=b2或a2+b2=c2,從而得出該三角形是等腰三角形或直角三角形.
解答 解:(1)根據(jù)余弦定理將cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$,cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$代入右邊,得
右邊=c($\frac{{a}^{2}+{c}^{2}-^{2}}{2abc}$-$\frac{^{2}+{c}^{2}-{a}^{2}}{2abc}$)=$\frac{2{a}^{2}-2^{2}}{2ab}$=$\frac{a}$-$\frac{a}$=左邊,
∴$\frac{a}$-$\frac{a}$=c($\frac{cosB}$-$\frac{cosA}{a}$);
(2)∵(a2-b2)sin(A+B)=(a2+b2)sin(A-B),
∴(a2-b2)sinC=(a2+b2)sin(A-B)=(a2+b2)(sinAcosB-cosAsinB),
∴(a2-b2)c=(a2+b2)(acosB-bcosA),
則(a2-b2)c=(a2+b2)(a•$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$),
整理得a2=b2或a2+b2=c2,
故△ABC是等腰三角形或直角三角形.
點(diǎn)評(píng) 本題考查三角形形狀的判斷,考查了正弦定理和余弦定理的應(yīng)用,涉及三角形形狀的判斷問題,要么化角為邊,要么化邊為角,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充要條件 | D. | 既不充分又不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{2π}{3}$ | C. | $\frac{3π}{2}$ | D. | π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,1] | B. | (-1,0] | C. | [1,+∞) | D. | (0,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-4,$\frac{3}{4}$] | B. | (-∞,-4]∪[$\frac{3}{4}$,+∞) | C. | (-4,$\frac{3}{4}$]∪[4,+∞) | D. | [-$\frac{3}{4}$,4] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com