分析 直接利用分類計數(shù)原理,即可得出結(jié)論.
解答 解:分類計數(shù)原理:完成一件事,有n類辦法,在第1類辦法中有m1種不同的方法,在第2類辦法中有m2種不同的方法…,在第n類辦法中有mn種不同的方法,那么完成這件事共有:N=m1+m2+…+mn種不同的方法.
(1)完成從書架上任取一本書,每取一本,都能完成這件事,故運用分類計數(shù)原理計數(shù);
(2)從書架上任取三本書,其中數(shù)學書,語文書,英語書各一本,完成這件事需要3步,故運用分步計數(shù)原理計數(shù);
(3)完成地到乙地,有3類辦法,每一類中辦法都能完成這件事,故運用分類計數(shù)原理計數(shù).
故答案為:(1)(3).
點評 此題主要考查了分類計數(shù)原理,分類計數(shù)原理是:做一件事情,完成它有n類辦法,在第一類辦法中有m1種不同的方法,在第二類辦法中有m2種不同的方法,…,在第n類辦法中有mn種不同的方法,那么完成這件事情共有m1+m2+…+mn種不同的方法;乘法原理是:即做一件事,完成它需要分成n個步驟,做第一步有m1種不同的方法,做第二步有m2不同的方法,…,做第n步有mn不同的方法.那么完成這件事共有 N=m1×m2×…×mn種不同的方法
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,1]∪[3,+∞) | B. | (-∞,1] | C. | [3,+∞) | D. | [$\frac{3}{2}$,$\frac{11}{6}}$] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com