20.已知函數(shù)f(x)=${({\frac{1}{2}})^{\sqrt{{x^2}-4ax+8}}}$在[2,6]上單調(diào),則a的取值范圍為(  )
A.(-∞,1]∪[3,+∞)B.(-∞,1]C.[3,+∞)D.[$\frac{3}{2}$,$\frac{11}{6}}$]

分析 令t=x2-4ax+8,則f(x)=${(\frac{1}{2})}^{\sqrt{t}}$,由題意可得x∈[2,6]時(shí),t≥0,且t單調(diào)遞減或單調(diào)遞增,再利用指數(shù)函數(shù)、二次函數(shù)的性質(zhì),分類討論,求得a的范圍.

解答 解:令t=x2-4ax+8,則f(x)=${(\frac{1}{2})}^{\sqrt{t}}$,由題意可得x∈[2,6]時(shí),t≥0,且t單調(diào)遞減或單調(diào)遞增,
∴$\left\{\begin{array}{l}{2a≥6}\\{36-24a+8≥0}\end{array}\right.$  ①,或$\left\{\begin{array}{l}{2a≤2}\\{4-8a+8≥0}\end{array}\right.$  ②,
解①求得a∈∅;解②求得a≤1,
綜上可得,a≤1,
故選:B.

點(diǎn)評(píng) 本題主要考查復(fù)合函數(shù)的單調(diào)性,指數(shù)函數(shù)、二次函數(shù)的性質(zhì),體現(xiàn)了轉(zhuǎn)化、分類討論的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知實(shí)數(shù)c是a,b的等差中項(xiàng),則直線l:ax-by+c=0被圓x2+y2=9所截得弦長(zhǎng)的取值范圍為$[\sqrt{34},6]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.sin7°cos37°-sin83°sin37°的值為( 。
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.一個(gè)茶葉盒的三視圖如圖所示(單位:分米),盒蓋與盒底為合金材料制成,其余部分為鐵皮材料制成,若合金材料每平方分米造價(jià)10元,鐵皮材料每平方分米造價(jià)5元,則該茶葉盒的造價(jià)為( 。
A.100元B.(60+35$\sqrt{3}$)元C.130元D.200元

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.下列函數(shù)中,既是偶函數(shù),又在區(qū)間(0,+∞)上單調(diào)遞增的函數(shù)是( 。
A.y=-x2B.y=|x|C.y=-x-1D.y=log2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在等差數(shù)列{an}中,若a4+a6=10,Sn是數(shù)列{an}的前n項(xiàng)和,則S9的值為( 。
A.43B.44C.45D.46

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.等比數(shù)列{an}的各項(xiàng)均為正數(shù),且a5a6+a4a7=18,則log3a1+log3a2+…+log3a10=10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.判斷下列各事件哪些是運(yùn)用分類計(jì)數(shù)原理計(jì)數(shù)(1)(3).
(1)一個(gè)三層書架的上層放有5本不同的數(shù)學(xué)書,中層放有3本不同的語(yǔ)文書,下層放有2本不同的英語(yǔ)書,從書架上任取一本書,有多少種不同的取法?
(2)一個(gè)三層書架的上層放有5本不同的數(shù)學(xué)書,中層放有3本不同的語(yǔ)文書,下層放,有2本不同的英語(yǔ)書;從書架上任取三本書,其中數(shù)學(xué)書,語(yǔ)文書,英語(yǔ)書各一本,有多少種不同的取法?
(3)從甲地到乙地,可以乘火車,也可以乘汽車,還可以乘輪船,假定火車每日1班,汽車每日3班,輪船每日2班,那么一天中從甲地到乙地有多少種不同的走法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知數(shù)列{an}滿足a1=1,an+1=4an+1.
(Ⅰ)證明:{an+$\frac{1}{3}}\right.$}是等比數(shù)列,并求{an}的通項(xiàng)公式;
(Ⅱ)證明:$\frac{1}{a_1}$+$\frac{1}{a_2}$+…+$\frac{1}{a_n}$<$\frac{4}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案